Методические рекомендации по исследованию строительных конструкций с применением математического и физического моделирования
Вид материала | Методические рекомендации |
- Программа курса «Основы математического моделирования» Осень 2007, 25.35kb.
- Аннотация дисциплины «основы математического моделирования», 29.01kb.
- Дефекты изготовления и монтажа строительных конструкций и их последствия, 779.7kb.
- Курс «Основы математического моделирования» реализуется в рамках специальностей 0647, 117.15kb.
- Авдейчиков Г. В. «Испытание строительных конструкций»: Учебное пособие (конспект лекций), 159.67kb.
- Задачи : 1 дать понятие математической модели, раскрыть суть метода математического, 187.03kb.
- Iii международный симпозиум актуальные проблемы компьютерного моделирования конструкций, 77.34kb.
- Пособие по обследованию строительных конструкций зданий, 3072.33kb.
- «Универсальная 32-битная среда для расчета и проектирования строительных конструкций, 23.4kb.
- Вид работ №30 «Монтаж, демонтаж строительных конструкций в подводных условиях», 16.72kb.
Приложение 4
примеры применения ФУНКЦИОНАЛЬНОго модЕЛирования
Исследование блоков-контейнеров
В 1984 - 1985 гг. были проведены комплексные исследования прочности и жесткости базового блока-контейнера, разработанного НИИСК Госстроя СССР, с целью:
разработки расчетной модели блока-контейнера, учитывающей совместную работу элементов каркаса и ограждающих конструкций;
проверки прочности и деформативности. основных несущих элементов отдельного блока и контейнера при действии расчетных нагрузок;
определения внутренних усилий в элементах каркаса от расчетных сочетаний нагрузок при различных конструктивных схемах зданий, собираемых из блоков-контейнеров.
Для решения поставленных задач был использован системный подход, так как применение только экспериментального либо теоретического метода не представлялось возможным из-за чрезвычайно большого объема экспериментов в первом случае и отсутствия достоверной расчетное модели - во втором. Исходя из поставленных целей, исследования проводились в три этапа:
этап I - предварительные численные исследования для получения зависимостей параметров напряженно-деформированного состояния yi в характерных точках блока-контейнера от неизвестных характеристик расчетной модели xi типа:
yi = fj(xi)(i = 1, 2,…, n; j = 1, 2,..., m); | (1) |
этап II - экспериментальные исследования блока-контейнера при действии расчетных и контрольных нагрузок, определение неизвестных параметров расчетной модели и проверка ее адекватности;
этап III - численные исследования различных типов зданий, собираемых из блоков-контейнеров, для получения расчетных значений внутренних усилий; в элементах.
Численные исследования выполнялись на ЭВМ EC-1030 с применением расчетного комплекса "ПРОКРУСТ". При этом расчетная схема блока-контейнера представляла собой пространственную пластинчато-стержневую систему. Стержни расчетной схемы, элементы каркаса задавались по геометрическим осям и с соответствующими жесткостными характеристиками. Плоскостные элементы - панели стен, пола и потолка - задавались как совокупности прямоугольных плоско-напряженных КЭ с приведенными характеристиками: коэффициент Пуассона υ, модуль упругости Е и толщина t. Соединения ограждающих стеновых панелей с элементами каркаса аппроксимированы в расчетной схеме контактными элементами с неизвестными жесткостями на сдвиг - Кτ, и на растяжение-сжатие Кσ (рис. 1).
Рис. 1. Расчетная схема стены блока-контейнера
1 - каркас блока - стержневые элементы; 2 - ограждающая конструкция - плоские КЭ; 3 - связь - контактные элементы
Рис. 2. Схема нагружения блока-контейнера
Для получения уравнений (1) использована матрица планирования типа 22 (см. приложение 1) и формулы (12) настоящих методических рекомендаций. Для получения линейных зависимостей перемещений от жесткостей связей в качестве неизвестных приняты не жесткости связей, а величины им обратные: ; .
При варьировании жесткостей связей принимались уровни Kσmax = Kτmax = 10000 кН/м; Kσmin = Kτmin = 100 кН/м. При выборе вариантов нагружений и характерных параметров напряженно-деформированного состояния блока учитывалось максимальное включение в работу стеновых панелей:
перемещение верхних углов блока вдоль приложенных к ним горизонтальных сил Y(2);
прогиб середины продольного элемента панели основания от равномерно распределенной нагрузки на пол Z(4).
В результате обработки численных экспериментов после отбрасывания малозначимых членов взаимодействий получаем систему уравнений:
| (2) |
Экспериментальные исследования блока-контейнера были выполнены на натурном образце, изготовленном на заводе и доставленном в НИИСК по железной дороге. Блок испытывался на следующие виды воздействий (рис. 2):
горизонтальная нагрузка, приложенная к верхним углам блока, направленная вдоль длинных Р(1) и коротких Р(2) сторон;
вертикальная нагрузка, приложенная к верхним углам блока, - Р(3);
равномерно распределенная нагрузка на основание - q(4);
то же, плюс равномерно распределенная нагрузка на пол - q(5).
Нагрузки P(1), P(2), P(3) достигали своих расчетных, а нагрузки q(4) и q(5) контрольных значений. Во время эксперимента измерялись перемещения углов и середин ребер блока, а также деформации в наиболее напряженных сечениях элементов каркаса.
При всех схемах нагружения, вплоть до расчетных величин нагрузок, нарастание перемещений в характерных точках было пропорционально росту нагрузки, что свидетельствовало об упругом характере работы конструкции.
Подставив в уравнения (2) экспериментальные значения перемещений - соответственно - 1,15 мм и - 5,0 мм, решив их, после соответствующих преобразований получим реальные значения жесткостей связей: Kσ = 900 кН/м; Кτ = 2500 кН/м.
Как показали экспериментальные исследования, стеновые панели, включаясь в работу, существенно разгружают элементы каркаса.
После определения всех неизвестных параметров расчетной модели были проведены численные исследования блока-контейнера.
Сначала исследовалось влияние на напряженно-деформированное состояние элементов каркаса возможных технологических дефектов при реальном осуществлении соединений с элементами каркаса.
Были рассмотрены следующие варианты: связи работают на растяжение и сдвиг; связи работают только на растяжение; связи работают только на сдвиг; связи отсутствуют.
Исследования показали, что качество выполнения связей существенно влияет на напряженно-деформированное состояние элементов каркаса, особенно стоек. При отсутствии связей или при выполнении их с отклонениями от проекта напряжения в элементах каркаса и перемещения существенно возрастают (рис. 3) и в ряде сечений могут превзойти допустимые значения.
Рис. 3. Влияние стеновых панелей на деформативность блока-контейнера
а - горизонтальная нагрузка; б - вертикальная нагрузка; 1 - эксперимент; 2 - расчет с учетом стеновых панелей; 3 - то же, без учета
Исследовалось также напряженно-деформированное состояние несущих элементов каркаса в зависимости от расположения данного блока в двухэтажном здании, в том числе рассматривались варианты удаления стен (продольных или торцовых) двух смежных блоков. Анализ результатов исследований показал, что из блок-контейнеров данной конструкции можно собирать двухэтажные здания. Причем могут быть применены различные объемно-планировочные решения, в том числе и с удалением двух смежных стен.
Уточнение расчетной модели с включением в работу стен позволило улучшить его технико-экономические показатели, расход металла на блок уменьшился на 140 кг. С учетом наших рекомендаций внесены коррективы в рабочие чертежи и изготовлен по ним экспериментальный блок-контейнер. Испытания облегченного блока контрольными нагрузками подтвердили правильность принятых конструктивных решении.
Исследования каркаса здания межвидового применения серии Т.020-1/83
Каркасы межвидового применения серии 1.020-1/83 предназначены для широкой номенклатуры зданий различного назначения, что обусловливает многообразие конструктивных схем, воздействий и т.д. В этой связи для рационального проектирования конструкций необходимо разработать такие расчетные модели, которые позволяли бы достоверно определять параметры напряженно-деформированного состояния элементов и, в частности, крайних ригелей, как наиболее сложно напряженной конструкции, с учетом их реальной работы в составе диска перекрытия.
Цель исследований:
совершенствование расчетной модели крайних ригелей с учетом их пространственной работы в составе диска перекрытия;
проверка правильности конструктивных решений опирания однополочных ригелей с подрезкой;
исследование влияния на напряженно-деформированное состояние крайних (однополочных) ригелей изменения конструктивных схем здания, характера нагрузок, жесткостей элементов, возможных несовершенств строительного производства, а также ряда других факторов, возникающих в процессе монтажа и эксплуатации здания.
Для решения поставленных задач была использована методика, основанная на системном анализе и функциональном моделировании, в соответствии с положениями которой процесс исследования был разбит на ряд последовательных этапов:
I - разработка расчетной модели каркаса малоэтажного здания, учитывающей факторы, влияющие на напряженно-деформированное состояние элементов (однополочных ригелей);
II - выявление неизвестных параметров расчетной модели и проведение предварительных численных исследований для получения уравнений типа (I);
III - проведение физических экспериментов для получения данных, необходимых для определения неизвестных параметров расчетной модели и проверки ее адекватности;
IV - уточнение расчетной модели и выполнение многовариантных расчетов - численных экспериментов - в необходимом объеме.
Анализ проведенных ранее исследований показал, что расчетная модель однополочного ригеля должна учитывать следующие обстоятельства: пространственную работу; податливость крепления ригеля к колонне; совместную работу ригеля и плит; влияние замоноличивания швов между плитами; возникновение распора в плитах и ригелях; изменение жесткостных характеристик элементов при увеличении нагрузки. Вместе с тем, результат расчета должен быть получен в виде, удобном для проектирования элементов, а сама расчетная модель должна быть четкой, удобной в работе.
С учетом вышеизложенного расчетная схема каркаса с плитами была принята в виде пространственной стержневой системы, в которой основные элементы каркаса (колонны, ригели, плиты) аппроксимированы стержневыми КЭ, оси которых совпадают с физическими осями элементов, а задание реальных расстояний между точками соединения элементов моделируется стержневыми элементами бесконечной жесткости. Соединения ригеля с плитами и плит между собой аппроксимированы дискретными связями (контактными элементами), не имеющими линейных размеров, но обладающими определенной жесткостью на растяжение (сжатие) и сдвиг.
Реализация расчетной схемы выполнена с применением программного комплекса "ПРОКРУСТ" на ЭВМ EC-1030.
Рассмотренная расчетная схема имеет десять неизвестных параметров: жесткость ригеля при изгибе в вертикальной , и горизонтальной плоскости; жесткость ригеля на кручение DP; жесткость соединения ригеля с колонной на кручение ; жесткость соединения ригеля с колонной при изгибе в горизонтальной плоскости ; жесткость плиты при изгибе ; жесткость плиты на кручение DП; высота опорного стержня плиты, определившая наличие распора, h; сдвиговая жесткость шва между плитами и ригелем КР.П; то же, между плитами КП. Таким образом, число уравнений, в системе (1) должно быть не менее десяти.
Поскольку основными параметрами входящими в левые части уравнений (1), будут измеренные в эксперименте перемещения, для получения линейных зависимостей необходимо перейти к новым неизвестным параметрам расчетной модели:
Для упрощения процесса определения неизвестных параметров расчетной модели xi; (i = 1. 2,…, 10) был применен принцип декомпозиции сложной системы (каркаса) на более простые подсистемы - ригели с опорными узлами и плиты. С учетом этого (1) распалось на шесть независимых систем и отдельных уравнений.
Подсистема - ригель - при действии вертикальной нагрузки:
| (3) |
| (4) |
Подсистема - плита:
| (5) |
| (6) |
Подсистема - швы:
| (7) |
где yj - параметры напряженно-деформированного состояния конструкций; у1 - вертикальный прогиб по средине ригеля; у2 - угол кручения среднего сечения ригеля; у3 - тоже, опорного; y4 - горизонтальный прогиб на средине ригеля; y5 - угол поворота в горизонтальной плоскости опорного сечения ригеля; y6 - прогиб плиты при шарнирном опирании; y7 - угол кручения по средине плиты; y8 - прогиб плиты при реальном опирании; y9 - прогиб середины ригеля в составе диска перекрытия; y10 - разность вертикальных смещений ребер двух смежных плит; вij коэффициенты уравнений регрессии, полученные методом планирования экспериментов в соответствии с матрицами планирования (см. приложение 1).
Для экспериментального определения перемещений yj были проведены испытания физических моделей со смешанным подобием: простое по отношению к неизвестным параметрам xi, и функциональное по отношению к остальным.
В соответствии с декомпозицией каркаса на подсистемы были испытаны модели:
ригелей на действие вертикальных и горизонтальных нагрузок (рис. 4,а);
плит при двух вариантах опирания (рис. 4,б);
фрагмента многоэтажного здания (рис. 4,в);
На основании анализа рабочих чертежей ригелей и плит, исходя из сортамента арматуры классов А-III и А-IV, принят масштаб моделирования Cl = 0,5.
Измеренные в эксперименте перемещения при действии указанных нагрузок подставлялись в соответствующие уравнения (3) - (7), из решения которых определялись неизвестные параметры расчетной модели xi. Причем, в зависимости от стадии работы конструкции, при которой измерялись перемещения уj, пара метры xi были определены для упругой стадии при действии нормативных и расчетных нагрузок и в стадии, близкой к разрушению. Так, например, при действии расчетных нагрузок были определены следующие значения неизвестных параметров в пересчете на натуру в соответствии с масштабами подобия: = 56000 кН м2; = 58000 кН м2; DP = 37000 кН м2; = 640 кН м2; = 2100 кН/м2; = 30000 кН м2; DП = 31000 кН м2; h = 9 см; КРП = 18 106 кН; КП = 13,2·105 кН.
Кроме указанных вариантов испытаний, модель фрагмента испытывалась равномерно распределенной нагрузкой вплоть до разрушения.
После определения неизвестных параметров были выполнены расчеты модели фрагмента и проверена адекватность расчетной модели, которая показала достоверность разработанной расчетной модели.
На отлаженной расчетной модели были выполнены численные исследования и оценено влияние ряда факторов (отклонения в жесткостных характеристиках элементов, изменение высоты этажа, изменение граничных условий, качество замоноличивания, стыков и т.д.) на напряженно-деформированное состояние каркаса здания межвидового применения.
Рис. 4. Декомпозиция каркаса многоэтажного здания
а - подсистема "ригель"; б - подсистема "плита"; в - подсистема "швы"
Исследование панели сборной железобетонной градирни на транспортные нагрузки
Целью исследований было определение оптимального расположения опор на транспортном средстве, обеспечивающем трещиностойкость панелей при перевозке.
По данной методике выполнялись исследований с применением методов математического и физического моделирования следующими этапами: экспериментальные исследования на физической модели, выбор и определение неизвестных параметров расчетной модели, проверка адекватности расчетной модели, численные исследования.
Физическое моделирование осуществлялось на модели из упругого материала, так как при транспортировании возникновение трещин в панелях не допускается. Согласно заданной схеме опирания конструкции в процессе перевозки (рис. 5) в ее элементах возникают, в основном, продольные напряжения, что дает возможность при моделировании не учитывать различие коэффициентов Пуассона материалов модели и натуры. С учетом условия подобия запишем:
| (8) |
где Си, СЕ, Сl, СР, Сσ, СМ - масштабы соответственно перемещений, модуля упругости, геометрических размеров, нагрузки, напряжений, изгибающих моментов. Поскольку масштабов шесть, а равенств в системе (8) имеем три, то тремя масштабами Сl, СЕ, СР, можем задаваться произвольно.
Исходя из технологических условий принимаем Сl = 0,05. Материал модели - эпоксидная смола ЭД-16М, следовательно, СЕ = = 0,103. Для удобства нагружения принимаем СР = 0,0032.
Подставив принятые, значения Сl, СЕ, СР в систему (8), получим: Си = 0,62; Сσ = 1,28; СМ = 1,6·10-4.
Для изготовления модели применена технология точного литья в размываемые формы.
При экспериментальных исследованиях измерялись прогибы панели в узлах, а также фибровые деформации ребер и поля панели. Значения средних и доверительных оценок результатов прямых измерений прогибов и деформаций определялись по формулам (2).
Определение неизвестных параметров математической модели при транспортировке в горизонтальном положении, когда направление транспортных нагрузок перпендикулярно плоскости панели, выполняется при условии следующих допущений: нагрузка прикладывается в узлах пересечения ребер и воспринимается, в основном, ребрами, так как их жесткость на порядок выше жесткости поля панели. Таким образом, расчетная схема панели представляется в виде стержневой системы, у которой оси стержней совпадают с физическими осями ребер (см. рис. 5). Часть исходных данных известна (координаты узлов, нагрузка). Не известны жесткостные характеристики приведенного сечения ребер.
Рис. 5. Горная панель градирни а - общий вид; б - расчетная схема
Для их определения необходимо выявить расчетную ширину полки таврового сечения. В такой постановке задача решалась экспериментально-теоретически с использованием данных тензометрических измерений фибровых деформаций. При этом, если расчетную ширину полки принять за х, то, исходя из гипотезы плоских сечений, получим:
| (9) |
где - усредненная по всей ширине х деформация в полке; = εР - фибровая деформация ребра; уЦ.Т(х) - расстояние центра тяжести сечения с шириной полки х до верха плиты.
Решение уравнения (9) получено методом последовательных приближений. Расчетная ширина полки х. определялась для опорных и пролетных сечений ребер.
Проверка адекватности расчетной модели выполнялась сравнением критериев Т и R вычисляемых по формулам (27) и (28) методических рекомендации соответственно. Для этого сначала находили средние значения и доверительные интервалы экспериментальных и теоретических величин сравниваемых параметров соответственно. Для прогибов оценка средних и доверительных значений выполнялась по формуле (2). Для изгибающих моментов аналогичные оценки выполнялись по формулам (8) и (9) с учетом равенства (таблица).
Параметры НДС | Значения | R | Т | Оценка адекватности (+) или неадекватности (-) расчетной модели | |||
теоретические | экспериментальные | ||||||
Средние | Доверительный интервал | Средние | Доверительный интервал | ||||
Прогибы, мм | |||||||
у1 | 87,1, | 18,6 | 84,3 | 1,6 | 2,8 | 18,7 | + |
у2 | 12,4 | 7,9 | 19,4 | 0,9 | 7 | 8 | + |
у3 | -16,7. | 10,9 | -0,1 | 1;3 | 16,6 | 11,3 | - |
у4 | 85,2 | 20,6 | 88,6 | 0,9 | 3,4 | 20,6 | + |
У5 | -12,5 | 9,7 | 0,8 | 0,6 | 13,2 | 9,8 | - |
Изгибающие моменты, Н·см | |||||||
М3 | 10,1 | 3,4 | 9,6 | 2,4 | 0,5 | 5,6 | + |
М7 | -34,5 | 2,8. | -31,4 | 5 | 3,1 | 7,9 | + |
М8 | -2,2 | 4,6 | 2,4 | 0,9 | 4,6 | 4,7 | + |
Доверительные интервалы теоретических значений параметров получены с применением математической теории планирования экспериментов по формулам (11), (12) и (26) настоящих методических рекомендаций на основании численного эксперимента. При этом учитывалась изменчивость следующих факторов:
х3 - расстояние от торца панели силы Р4; х5 - то же, Р1; х4 - расстояние от оси опоры силы Р5; х6 -то же, Р2; х7 - расстояние опоры от оси панели.
При учете влияния семи факторов численные эксперименты проводились в соответствии с матрицей планирования 3 < n ≤ 7 (см. приложение 1). Значения факторов в центре плана и их доверительные интервалы были соответственно 1,5 ±0,15; 2,23 ±0,33; 6 ±3 мм; 42 ±4 мм; 6 ±3; 21 ±4 мм; 102 ±2 мм. Полученные средние значения и доверительные интервалы параметров напряженно-деформированного состояния: прогибов в точках 1...5 и изгибающих моментов в точках 3...8 - приведены в таблице совместно с результатами вычислений проверки адекватности расчетной модели.
Из таблицы видно, что почти по всем параметрам расчетная модель адекватна физической. В точках неадекватности теоретические значения превышают экспериментальные, кроме того, значения параметров НДС в точках неадекватности гораздо ниже экстремальных показателей. Исходя из этого, а также цели проводимых исследований, делаем вывод о пригодности математической модели для дальнейших численных исследований.
Численные исследования проводились для определения оптимального расположения опор при транспортировании панелей. Критерием оптимальности было условие удовлетворения равнопрочности по трещиностойкости опорных и пролетных сечений. Для натурной конструкции после ряда преобразований оно запишется как:
где МОП - изгибающий момент в продольном ребре у опоры; МПР - то же, в пролете.
Выполнив серию расчетов, в которых варьировалось расстояние опор от середины продольных ребер, находим их оптимальные значения: 2180 мм по одному продольному ребру и 2340 - по другому. При этом обеспечивается трещиностойкость панели в процессе перевозки.