Методические рекомендации по исследованию строительных конструкций с применением математического и физического моделирования  

Вид материалаМетодические рекомендации
3.2. Экспериментально-теоретический метод определения элементов матрицы жесткости СЭ
V] - матрица, обратная матрице перемещений СЭ; C
Приложение 1МАТРИЦА ПЛАНИРОВАНИЯ ЭКСПЕРИМЕНТА
Подобный материал:
1   ...   6   7   8   9   10   11   12   13   14

3.2. Экспериментально-теоретический метод определения элементов матрицы жесткости СЭ


3.2.1. В решении задач исследования строительных конструкций блочно-регулярной структуры целесообразно использовать метод укрупненных элементов, или суперэлементов (СЭ). Расчетная модель конструкции с использованием СЭ строится по [37], а расчетные исследования могут быть выполнены с помощью существующего программного обеспечения.

3.2.2. Применение метода СЭ в экспериментальных исследованиях конструкций блочно-регулярной структуры, позволяет произвести замену испытания всей конструкции испытанием ее фрагментов (суперэлементов) с последующим объединением их на уровне расчетной модели. При этом целесообразно адекватность физической модели и ее расчетного аналога устанавливать сопоставлением матриц жесткости суперэлементов (МЖ СЭ).

3.2.3. В качестве экспериментального способа получения МЖ СЭ рекомендуется метод, теоретическое обоснование которого приведено в [38], с помощью которого МЖ СЭ может быть получена также из расчета.

3.2.4. Реализация СЭ предполагает:

изготовление физической модели фрагмента конструкции, представляющей собой СЭ;

разработку проекта испытательной установки с учетом того, что установленная в ней модель должна иметь опоры конечной жесткости Ci в направлении возможных смещений, в соответствии с которыми прикладываются силовые воздействия Рj и измеряются перемещения Vij.

3.2.5. После загружения модели поочередно силами Pj, имеющими единичные значения произвольной размерности, и измерения перемещений в каждом из направлений смещений i получим матрицу перемещений узлов модели:



(43)

где n - полное количество направлений возможных смещений.

3.2.6. Матрица жесткости суперэлемента, определенная по результатам эксперимента, вычисляется на основании зависимости:



(44)

где [ V]-1 - матрица, обратная матрице перемещений СЭ; C - диагональная матрица жесткости опорных устройств. модели суперэлемента;

C =

Примечание. Совершенствование исследований прочности и деформативности строительных конструкций - одна из важнейших задач научно-технического прогресса в строительстве.

Предлагаемый новый подход к исследованиям сложных строительных конструкций основан на системном анализе, комплексном использовании методов математического и физического моделирования в зависимости от их экономической целесообразности и полезности для решения поставленной задачи.

Процесс исследований представлен как совокупность последовательно выполняемых этапов, содержащих формальные и неформальные процедуры. Максимально возможное выделение формальных методов и приемов позволяет снизить влияние субъективных факторов на результаты исследований. Основной упор сделан на численные исследования с применением средств автоматизации и ЭВМ на основе достоверных расчетных моделей. Физический эксперимент используется, как правило, для определения неизвестных параметров расчетной модели и проверки ее адекватности. Это дает возможность разрабатывать физические модели исследуемых объектов на основе функционального подобия, благодаря чему существенно сокращаются затраты ресурсов на физическое моделирование.

Однако комплексное применение методов математического и физического моделирования нуждается в дальнейшем углублении и совершенствовании. Можно полагать, что применение настоящих методических рекомендаций даст возможность выполнять прочностные исследования сложных строительных конструкций на единой методологической основе, что позволит снизить стоимость и трудоемкость исследований, сократить сроки их проведения, повысить достоверность и научную ценность получаемых результатов.

Приложение 1
МАТРИЦА ПЛАНИРОВАНИЯ ЭКСПЕРИМЕНТА


Планы первого порядка

п ≤ 3

3 < п = 7

№ опыта

Χ1

Χ2

Χ3

№ опыта

Χ1

Χ2

Χ3

Χ4

Χ5

Χ6

Χ7

1

+1

+1

+1

1

+1

+1

+1

+1

+1

+1

+1

2

-1

+1

-1

2

-1

+1

-1

+1

-1

+1

-

3

+1

-1

-1

3

+1

-1

-1

+1

+1

-1

-1

4

-1

-1

+1

4

-1

-1

+1

+1

-1

-1

+1

 

5

+1

+1

+1

-1

-1

-1

-1

6

-1

+1

-1

-1

+1

-1

+1

7

+1

-1

-1

-1

-1

+1

+1

8

-1

-1

+1

-1

+1

+1

-1

Планы второго порядка

Уравнение

п = 2

№ опыта

Χ1

Χ2

1

+1

+1

2

+1

-1

3

-1

+1

4

-1

-1

5

+1

0

6

-1

0

7

0

+1

8

0

-1

9

0

0

10

0

0

11

0

0









п = 3

№ опыта

Χ1

Χ2

Χ3

1

+1

+1

+1

2

-1

+1

+1

3

+1

-1

+1

4

-1

-1

+1

5

+1

+1

-1

6

-1

+1

-1

7

+1

-1

-1

8

-1

-1

-1

9

+1

0

0

10

-1

0

0

11

0

+1

0

12

0

-1

0

13

0

0

+1

14

0

0

-1

15

0

0

0

16

0

0

0

17

0

0

0









n = 4

№ опыта

Χ1

Χ2

Χ3

Χ4

1

+1

+1

+1

+1

2

-1

+1

+1

+1

3

+1

-1

+1

+1

4

-1

-1

+1

+1

5

+1

+1

-1

+1

6

-1

+1

-1

+1

7

+1

-1

-1

+1

8

-1

-1

-1

+1

9

+1

+1

+1

-1

10

-1

+1

+1

-1

11

+1

-1

+1

-1

12

-1

-1

+1

-1

13

+1

+1

-1

-1

14

-1

+1

-1

-1

15

+1

-1

-1

-1

16

-1

-1

-1

-1

17

+1

0

0

0

18

-1

0

0

0

19

0

+1

0

0

20

0

-1

0

0

21

0

0

-1

0

22

0

0

-1

0

23

0

0

0

+1

24

0

0

0

-1