Методическое пособие к лабораторным работам по физической и коллоидной химии для студентов биологических факультетов

Вид материалаМетодическое пособие
Устройство, в котором энергия химической реакции непосредственно превращается в электрическую энергию, называется галь­ванически
Э.д.с. любого гальванического элемента равна разности его элек­тродных потенциалов.
Скачок потенциала на границе между неодинаковыми по составу или по концентрации растворами называется диффузионным потенциалом.
В одородный электрод.
Каломельный электрод.
Хлорсеребряный электрод.
Подобный материал:
1   ...   5   6   7   8   9   10   11   12   ...   26
§ 66. Гальванические элементы и их электродвижущая сила.

Устройство, в котором энергия химической реакции непосредственно превращается в электрическую энергию, называется галь­ваническим элементом.

Гальванический элемент состоит из двух соприкасающихся друг с другом растворов электролитов, в которые погружены металличе­ские пластинки — электроды, соединенные между собой внешним проводником. Гальванический элемент, дающий электрический ток, находится в неравновесном состоянии. С уменьшением силы тока разность потенциалов между электродами возрастает. Если сила тока бесконечно мала и система практически находится в состоянии равновесия, элемент этот работает обратимо. Максимальная раз­ность потенциалов, достигаемая при обратимой работе галь­ванического элемента, называется его электродвижущей силой (эдс).

Элемент называется необратимым, если в системе хотя бы один из процессов является термодинамически необратимым.

В качестве обратимого гальванического элемента рассмотрим элемент Якоби — Даниеля, который состоит из медного и цинкового электродов, погруженных соответственно в растворы CuSO4 и ZnSO4. Схематически этот элемент изображается следующим образом:



Здесь поверхность раздела двух фаз, между которыми имеет место скачок потенциала, обозначена вертикальной линейкой. Двойная линейка означает, что в месте соприкосновения двух растворов скачок потенциала, обусловленный различной ско­ростью диффузии ионов (так называемый диффузионный потенци­ал), снят и его можно не учитывать при вычислении эдс этого элемента. Металл с большей величиной стандартного потенциала (положительный электрод) принято писать слева, а с меньшей ве­личиной (отрицательный электрод)—справа.

Общий вид гальванического элемента Якоби — Даниеля показан на рис. 4.10. В пористом сосуде 1 находится раствор CuSO4, в кото­рый погружен медный электрод. Этот сосуд помещен в стеклянную банку 2, содержащую цинковый электрод, находящийся в раство­ре ZnSO4.

На границе раздела фаз металл — жидкость образуется двойной электрический слой, при этом поверхность металла заряжается от­рицательно, прилегающий слой — положительно. При разомкнутой цепи процесс растворения цинка быстро достигает равновесного со­стояния и приостанавливается. Если цинковый электрод соединить каким-либо проводником с медным электродом, будет наблюдаться совершенно иная картина (рис. 4.11).



Рис.4.10 Гальванический элемент Якоби - Даниэля

Рис. 4.11 Возникновение э.д.с. в элементе Якоби – Даниэля

mn – пористая мембрана, проницаемая для ионов


В этом случае избыточные элек­троны с цинкового электрода потекут на медный, и во внешней це­пи возникнет электрический ток, который можно измерить c по­мощью гальванометра. Электроны, перешедшие на медь, нейтрали­зуют осадившиеся на ней из раствора CuSO4 ионы Сu2+, превращая их в электронейтральные атомы меди.

Остающиеся свободными сульфат-ионы через пористые стенки сосуда 1 проникают во внешнюю жидкость и, соединяясь с катиона­ми Zn2+ металлического цинка, дают ZnSO4. С другой стороны, ка­тионы цинка в процессе работы гальванического элемента также диффундируют из сосуда 2 через пористую перегородку в сосуд 1, замещая там перешедшие на медную пластинку катионы Сu2+. В результате этого раствор CuSO4 в сосуде 1 постепенно превраща­ется в ZnSO4.

По мере удаления по внешней цепи с цинковой пластинки из­бытка электронов все новые количества катионов Zn2+ будут пере­ходить в раствор. Гальванический элемент будет работать до тех пор, пока весь цинковый электрод не растворится, т. е. перейдет в состояние катионов Zn2+. После этого электрический ток прекраща­ется.

При работе гальванического элемента происходит одновремен­ный перенос электричества по двум цепям: внешней (поток электро­нов по проволоке) и внутренней (поток катионов в жидкой фазе элемента). Как видно из рис. 4.11, цинк для внешней цепи играет роль катода (посылает во внешнюю цепь отрицательно заряженные элек­троны), а для внутренней цепи — анода (посылает во внутреннюю цепь положительно заряженные катионы). Медь для внешней цепи играет роль анода (акцептор электронов), а для внутренней — роль катода (акцептор электронов).

Гальваническая цепь может быть составлена из пар самых раз­нообразных металлов, из которых каждый погружен в раствор сво­ей соли. Например:



Э.д.с. всех гальванических элементов слагается из величин по­тенциалов, возникающих на всех границах раздела. Без учета диф­фузионного потенциала основное уравнение э.д.с. будет иметь вид




4.91
где Е — э.д.с. гальванического элемента, ε1 и ε2 — электродные по­тенциалы.

Э.д.с. любого гальванического элемента равна разности его элек­тродных потенциалов.

Уравнение (4.91) широко используется в электрохимии, и на нем основаны все расчеты, связанные с работой гальванических эле­ментов.

В качестве примера рассмотрим, чему будет равняться э.д.с. только что рассмотренного гальванического элемента Якоби — Даниеля, если концентрации (активности) ионов цинка и меди равны между собой, т. е. аZn2+ = αCu2+ наглядности расчета запи­шем эту цепь:



На основании уравнения (4.91) э.д.с. этой цепи будет равна:




4.92
Используя уравнение Нернста, можем записать




4.93
С учетом этого уравнение (4.91) может быть представлено так:





4.94
Поскольку по условию задачи aCu2+ = aZn2+ , уравнение (4.94) еще более упростится:




4.95
Э.д.с. гальванического элемента, составленного из двух разных электродов, но с одинаковой концентрацией (активностью) их со­лей, равна разности стандартных потенциалов этих элементов.

Подставляя численные значения и , получим E=+0,34—(—0,76)=1,1 В. Опыт показывает, что эта величина очень хорошо совпадает с экспериментально найденной э.д.с. медно - цинкового элемента.


§ 67. Диффузионный потенциал. Биологическое значение диффузионных и мембранных потенциалов.

Говоря о гальваническом элементе, мы рассматривали только границу разде­ла металл — раствор его соли. Теперь обратимся к границе раздела между рас­творами двух различных электролитов. В гальванических элементах на границах соприкосновения растворов могут возникать так называемые диффузионные потенциалы. Они возникают также и на границе раздела между растворами одного и того же электролита в том случае, когда концентрация растворов неодинакова. Причина возникновения потенциала в подобных случаях заключается в неодина­ковой подвижности ионов в растворе.

Скачок потенциала на границе между неодинаковыми по составу или по концентрации растворами называется диффузионным потенциалом. Значение диффу­зионного потенциала зависит, как показывает опыт, от различия подвижностей ионов, а также от различия концентраций соприкасающихся растворов.

Диффузионный потенциал можно определить экспериментально, а также вы­числить. Так, значение диффузионного потенциала (εД), возникающего при сопри­косновении растворов различной концентрации одного и того же электролита, да­ющего однозарядные ионы, вычисляется по формуле




4.96
где lк и lа — соответственно подвижности катиона и аниона; a1 и а2 — активности соприкасающихся электролитов, причем а12. Если бинарный электролит дает два однозарядных иона, правая часть выражения (4.96) должна быть разделе­на на 2.

Если соприкасаются между собой два бинарных электролита, дающие одно­зарядные ионы и имеющие равные концентрации, диффузионный потенциал вы­числяется по следующей формуле:




4.97
где lК и lа — подвижности ионов одного электролита; lК и la — подвижности ионов другого электролита.

При точных вычислениях э.д.с. гальванических цепей обязательно должна вводиться поправка на величину диффузного потенциала, включая между растворами электролита насыщенный раствор хлорида калия. Так как подвижность ионов калия и хлора примерно одинаковы (l K+ = 64,4 ·10-4 и l Cl- = 65,5 · 10-4 См·м2), то диффузионный потенциал, вызываемый таким электро­литом, практически будет равен нулю.

Диффузионные потенциалы могут возникать и в биологических объектах при повреждении, например, оболочек клеток. При этом нарушается избирательность их проницаемости и электролиты начинают диффундировать в клетку или из нее — в зависимости от разности концентраций. В результате диффу­зии электролитов возникает так на­зываемый потенциал повреждения, который может достигать величин порядка 30—40 милливольт. Причем поврежденная ткань заряжается отри­цательно по отношению к неповреж­денной.

Диффузионный потенциал может сильно возрасти, если растворы элек­тролитов различных концентраций разделить специальной мембраной, проницаемой только для ионов одно­го какого-то знака.

В ряде случаев возникновение мембранного потенциала связано с тем, что поры мембраны не соответ­ствуют размерам ионов определенного знака. Мембранные потенциалы весь­ма стойки и могут без изменения со­храняться долгое время. В тканях растительных и животных организмов, даже внутри одной клетки, имеются мембранные и диффузионные потенциалы, обусловленные химической и морфологической неоднородностью внутриклеточно­го содержимого. Различные причины, изменяющие свойства микроструктур клет­ки, приводят к освобождению и диффузии ионов, т. е. к появлению различных биопотенциалов и биотоков. Роль этих биотоков в настоящее время еще до конца не изучена, но имеющиеся экспериментальные данные свидетельствуют об их важном значении в процессах саморегуляции живого организма.


§ 68. Концентрационные цепи.

Известны гальванические элементы, в которых электрическая энергия образуется не за счет химической реакции, а за счет разни­цы концентраций растворов, в которые опущены электроды из одно­го и того же металла. Такие гальванические элементы называются концентрационными (рис. 4.12). В качестве примера можно назвать цепь, со­ставленную из двух цинковых электродов, погруженных в растворы ZnSO4 различной концентрации:



В этой схеме С1 и С2— концентрации электролитов, причем C1>C2 Поскольку металл обоих электродов один и тот же, стандартные по­тенциалы их (εoZn ) также одинаковы. Однако из-за различия кон­центрации катионов металла равновесие



в растворе в обоих полуэлементах неодинаково. В полуэлементе с менее концентрированным раствором (С2) равновесие несколько сдвинуто вправо, т. е.



В этом случае цинк посылает в раствор больше катионов, что при­водит к возникновению на электроде некоторого избытка электро­нов. По внешней цепи они перемещаются ко второму электроду, по­груженному в более концентрированный раствор сульфата цинка ZnSO4.

Таким образом, электрод, погруженный в раствор большей кон­центрации (C1), зарядится положительно, а электрод, погруженный в раствор меньшей концентрации, зарядится отрицательно.

В процессе работы гальванического элемента концентрация С1 постепенно уменьшается, концентрация С2 увеличивается. Элемент работает до тех пор, пока сравняются концентрации у анода и ка­тода.

Вычисление э.д.с. концентрационных элементов рассмотрим на примере цинкового концентрационного элемента.

Допустим, что концентрация C1 = l моль/л, а С2 = 0,01 моль/л. Коэффициенты активности Zn2+ в растворах этих концентраций со­ответственно равны: f1 = 0,061, а f2 = 0,53. Для вычисления э.д.с. це­пи воспользуемся уравнением (4.91). На основании уравнения Нернста можем написать




4.98
где a1 и а2 — активности катионов Zn2+ в первом и во втором полу­элементах. Подставляя эти значения ε1 и ε2 в уравнение (4.91), получим





4.99
Учитывая, что



получим





4.100
Таким образом, э.д.с. цинковой концентрационной цепи равна 0,030 В. Общее уравнение для вычисления э.д.с. подобных цепей имеет вид




4.101
Из уравнения (4.100) видно, что концентрацию ионов в данном рас- творе можно легко вычислить, если составить цепь, один из элек­тродов которой опущен в исследуемый раствор, а другой— в раствор с известной активностью тех же ионов. Для этой цели необходимо только измерить э.д.с. составленной цепи, что может быть легко сде­лано с помощью соответствующей установки. Концентрационные цепи широко используются в практике для определения рН раство­ров, произведения растворимости труднорастворимых соединений, а также для определения валентности ионов и констант нестойкости в случае комплексообразования.

­


§ 69. Электроды сравнения.

Как уже отмечалось, потенциалы различных электродов изме­ряются по отношению к потенциалу нормального водородного элек­трода. Наряду с водородным в электрохимии в настоящее время широко применяется другой электрод сравнения — так называемый каломельный электрод, который, как показал опыт, обладает по­стоянным и хорошо воспроизводимым потенциалом.

В


одородный электрод.
Благородные металлы, например золото, платина и некоторые другие, обладают прочной кристаллической решеткой, и их катионы не переходят в раствор из металла. Следо­вательно, такие металлы не имеют на границе металл — раствор своего характерного скачка потенциала. Однако, если на поверхно­сти этих металлов адсорбируются вещества, которые способны окис­ляться или восстанавливаться, эти металлы с адсорбированными ве­ществами уже представляют собой системы, находящиеся в равно­весии с раствором. Если веществом, адсорбирующимся на поверх­ности благородного металла, является газ, электрод называется га­зовым.

Таким образом, платиновая пластинка или проволока, поглотив­шая молекулярный водород и опущенная в раствор, содержащий ионы водорода, представляет собой водородный электрод. Посколь­ку сама платина не участвует в электродной реакции (ее роль сво­дится лишь к тому, что она поглощает водород и, будучи проводником, делает возможным перемещение электронов от одного электро­да к другому), химический

символ платины в схеме водородного электрода обычно заключают в скобки: (Pt)H2|2H+.

Существуют различные конструкции сосудов для водородного электрода, две из которых показаны на рис. 4.13.

На поверхности водородного электрода устанавливается равно­весие:




В результате этих процессов на границе между платиной и раствором ионов водорода образуется двойной электрический слой, обус­ловливающий скачок потенциала. Величина этого потенциала при данной температуре зависит от активности водородных ионов в рас­творе и от количества поглощенного платиной газообразного водо­рода, которое пропорционально его давлению:




4.102
где аН+ - активность водородных ионов в растворе; РН2,— дав­ление, под которым поступает для насыщения электрода газообраз­ный водород. Опыт показывает: чем больше давление для насыще­ния платины водородом, тем более отрицательное значение прини­мает потенциал водородного электрода.

Электрод, состоящий из платины, насыщенной водородом под давлением в 101,325 кПа и погруженной в водный раствор с актив­ностью ионов водорода, равной единице, называется нормальным водородным электродом.

По международному соглашению потенциал нормального водо­родного электрода условно принят равным нулю, с этим электродом сопоставляют потенциалы всех других электродов.

В самом деле, при Рн2,— 101.325 кПа выражение для потенци­ала водородного электрода будет иметь вид




4.103
Уравнение (4.103) справедливо для разбавленных растворов.

Таким образом, при насыщении водородного электрода водоро­дом под давлением в 101,325 кПа потенциал его зависит только от концентрации (активности) водородных ионов в растворе. В связи с этим водородный электрод может применяться на практике не только как электрод сравнения, но и как индикаторный электрод, потенциал которого находится в прямой зависимости от присутст­вия Н+-ионов в растворе.

Приготовление водородного электрода представляет значитель­ные трудности. Нелегко добиться, чтобы давление газообразного водорода при насыщении платины равнялось точно 101,325 кПа. Кроме того, газообразный водород должен поступать для насыще­ния со строго постоянной скоростью, к тому же для насыщения не­обходимо применять совершенно чистый водород, так как уже весь­ма малые количества примесей, особенно H2S и H3As, «отравляют» поверхность платины и тем самым препятствуют установлению рав­новесия Н2↔2Н++2е-. Получение водорода высокой степени чисто­ты связано со значительным усложнением аппаратуры и самого процесса работы. Поэтому на практике чаще применяется более простой каломельный электрод, обладающий устойчивым и отлич­но воспроизводимым потенциалом.

Каломельный электрод. Неудобства, связанные с практическим применением водородного электрода сравнения, привели к необхо­димости создания других, более удобных электродов сравнения, од­ним из которых является каломельный электрод.

Для приготовления каломельного электрода на дно сосуда наливают тщательно очищенную ртуть. Последнюю сверху покрывают пастой, которая получается растиранием каломели Hg2Cl2 с несколькими каплями чистой ртути в присутствии раствора хлорида калия КСl. Поверх пасты наливают раствор КСl, насыщен­ный каломелью. Металлическая ртуть, добавляемая в пасту, предо­храняет от окисления каломели до HgCl2. В ртуть погружают пла­тиновый контакт, от которого уже идет медная проволока к клемме. Каломельный электрод схематически записывается следующим об­разом: Hg|Hg2Cl2, KC1. Запятая между Hg2Cl2 и КСl означает, что между этими веществами нет поверхности раздела, так как они на­ходятся в одном растворе.

Рассмотрим, как работает каломельный электрод. Каломель, растворяясь в воде, диссоциирует с образованием ионов Hg+ и Сl-:



В присутствии хлорида калия, содержащего одноименный с кало­мелью ион хлора, растворимость каломели снижается. Таким обра­зом, при данной концентрации КСl и данной температуре концен­трация ионов Hg+ постоянна, чем, собственно, и обеспечивается не­обходимая устойчивость потенциала каломельного электрода.

Потенциал (εк) в каломельном электроде возникает на поверх­ности соприкосновения металлической ртути с раствором ее ионов и может быть выражен следующим уравнением:




4.104
Ввиду малой способности ртути переходить в раствор потенциал имеет положительный знак по отношению к потенциалу нормально­го водородного электрода.

Каломель Hg2Cl2 трудно растворима в воде. При 298 К ее про­изведение растворимости




4.105
Так как ПР при постоянной температуре есть величина постоян­ная, увеличение концентрации иона хлора может оказать существен­ное влияние на концентрацию ионов ртути, а следовательно, и на потенциал каломельного электрода.

Из уравнения (4.105)




4.106
Подставляя это выражение в уравнение (4.104), получим





4.107
Объединяя постоянные при данной температуре величины ε0Нg и Ж lg (ПР) в одну величину и обозначая ее через εок, получим уравнение потенциала каломельного электрода:




4.108
Таким образом, потенциал каломельного электрода в конечном итоге зависит от концентрации (активности) ионов хлора в раство­ре, находящемся над слоем каломели Hg2Cl2, поэтому каломельный электрод может быть отнесен к электродам второго рода.

В насыщенном растворе КСl при 291 К потенциал каломельного электрода εк=0,2503 В; в случае 1 н. раствора КСl εк —0,2864 В, в 0,1 н. КСl εк=0,3380 В. В практике чаще всего применяют каломельные электроды двух типов — с однонормальным раствором КСl и с насыщенным раствором этой соли.





Пользуясь каломельным электродом, можно опытным путем оп­ределить потенциал любого электрода. Так, для определения по­тенциала цинкового электрода составляют гальваническую цепь из цинка, погруженного в раствор ZnSO4, и каломельного электрода



Допустим, что экспериментально определенная э.д.с. этой цепи дает величину E=1,0103 В. Потенциал каломельного электрода εк=0,2503 В. Потенциал цинкового электрода E=εк—εZn, откуда εZnK-Е, или eZn = 0,2503—1,0103 = —0,76 В.

Заменяя в данном элементе цинковый элект­род медным, можно определить потенциал меди и т. д. Таким образом можно определить потен­циалы почти всех электродов.

Хлорсеребряный электрод. Помимо каломель­ного электрода, в лабораторной практике в ка­честве электрода сравнения широкое распростра­нение получил также хлорсеребряный электрод. Этот электрод представляет собой серебряную проволоку или пластинку, припаянную к мед­ной проволоке и впаянную в стеклянную трубку. Серебро электролитически покрывают слоем хло­рида серебра и помещают в раствор КСl или НС1.

Потенциал хлорсеребряного электрода, так же как и каломельного, зависит от концентрации (активности) ио­нов хлора в растворе и выражается уравнением




4.109
где εхс — потенциал хлорсеребряного электрода; еохс — нормальный потенциал хлорсеребряного электрода. Схематически хлорсеребря­ный электрод записывается следующим образом:




Потенциал этого электрода возникает на границе раздела серебро-раствор хлористого серебра.

При этом имеет место следующая электродная реакция:



Ввиду чрезвычайно малой растворимости AgCl потенциал хлорсе­ребряного электрода имеет положительный знак по отношению к нормальному водородному электроду.

В 1 н. растворе КСl потенциал хлорсеребряного электрода по во­дородной шкале при 298 К равен 0,2381 В, а в 0,1 н. растворе εxc = 0,2900 В и т. д. По сравнению с каломельным электродом хлорсеребряный электрод имеет значительно меньший температурный коэффициент, т. е. его потенциал в меньшей степени изменяется с температурой.