Подытоживая приведенные выше примеры проявления техногенных аварий и катастроф, можно синтезировать следующую схематическую взаимосвязь между современной геодинамикой и техногенными катастрофами

Вид материалаДокументы

Содержание


Выводы по формуле
Ю.В. Казанцев, Т.Т. Казанцева
40. Р.И. Нигматуллин
Подобный материал:
  1   2

Подытоживая приведенные выше примеры проявления техногенных аварий и катастроф, можно синтезировать следующую схематическую взаимосвязь между современной геодинамикой и техногенными катастрофами.

- широкий класс техногенных катастроф обусловлен непосредственным и опосредованным воздействием современных геодинамических движений на объекты недропользования;

- в спектре геодинамических движений выделяются трендовые и периодические цикличные движения, каждые из которых создают свой специфичный механизм развития техногенной катастрофы;

- механизм развития техногенной катастрофы при трендовых геодинамических движениях состоит в непосредственном нагружении сооружений объекта недропользования за счет медленно развивающихся смещений и деформаций в массиве горных пород и на земной поверхности;

- механизм развития техногенных катастроф при цикличных геодинамических движениях происходит двумя путями: непосредственным воздействием цикличных деформаций и смещений на объект; комбинированным воздействием, обусловленным как непосредственным воздействием цикличных смещений и деформаций на объект, так и изменением свойств пород, взаимодействующих с объектом;

- в случае проявления трендовых геодинамических движений, причины разрушения объекта обычно связаны с превышением допустимых деформаций и напряжений;

- в случае цикличных геодинамических движений, причины разрушения объектов более многообразны: при непосредственном воздействии цикличных движений объект может быть нарушен либо от превышения допустимых деформаций и напряжений, либо от проявления усталостных эффектов в его конструктивных элементах; при комбинированном воздействии процесс разрушения может происходить либо за счет превышения допустимых нагрузок, вызванных изменением свойств массивов горных пород, либо за счет превышения допустимых нагрузок от совместного действия цикличных нагрузок и нагрузок от тиксотропии, либо от усталостных эффектов, вызванных совместным действием цикличных нагрузок и тиксотропии.

Выявленная взаимосвязь между современными геодинамическими движениями и механизмом развития техногенных катастроф в области недропользования создает теоретическую основу в определении стратегии проведения фундаментальных исследований по проблеме изучения природы техногенных катастроф. Одновременно использование ее повышает эффективность решения прикладных задач, связанных с прогнозированием и разработкой мер по предотвращению техногенных катастроф и снижению тяжести их последствий в конкретных ситуациях недропользования.

В соответствии с основными положениями теории глобальной тектоники плит, литосфера Земли представляет собой относительно жесткую оболочку, "плавающую" на поверхности достаточно вязкой мантии. Эта оболочка разбита региональными тектоническими нарушениями на ряд крупных литосферных блоков, линейные размеры которых достигают нескольких тысяч километров; эти, так называемые мегаблоки находятся в постоянном движении относительно друг друга. Каждый литосферный блок, в свою очередь, разбит на множество более мелких структурных блоков системами региональных и локальных тектонических нарушений, по которым также происходят тектонические подвижки. Таким образом, реальный массив горных пород представляет собой сложную иерархически блочную среду, каждой структурной единице которой присущи свои деформационные характеристики, каждая структурная единица которой находится в постоянном движении относительно окружающих ее структурных единиц. Уже установлено, что тектонические нарушения даже невысокого ранга обладают достаточной подвижностью, которая носит как трендовый направленный характер, так и представлена динамическими колебаниями различной природы. В настоящее время достаточно хорошо известно о движениях литосферных плит, происходящих по таким крупным живущим разломам как Сан-Андреас в Калифорнии, Северо-Анатолийский в Турции и др. Изучение современных движений земной поверхности производится путем постоянного переопределения пространственных координат специальных мониторинговых станций. В настоящее время существует не менее 25 специальных мониторинговых сетей, таких как сеть IGS - International GPS Service, объединяющих в общей сложности более 1000 обсерваторий, расположенных на всех континентах Земли. Согласно данным инструментальных наблюдений ( d.edu), трендовые скорости перемещения литосферных плит и подвижек по региональным разломам примерно одинаковы, и составляют для разных мест наблюдений от 10 до 50 мм/год. Кроме трендовой составляющей достаточно четко прослеживаются несколько короткопериодных составляющих с периодами 300, 100, 20 и менее суток. Поскольку, согласно традиционной точки зрения современные движения литосферных плит происходят в основном по их границам, а также во внутриплитных сейсмоактивных областях, на остальной территории Земли массив горных пород в большинстве случаев представляется как среда статическая и незыблемая. Однако, как показывают исследования, даже на небольших участках массива имеют место деформационные процессы с различными периодами и амплитудой [1]. Такие процессы, происходящие в земной коре, сопряжены с серьезной опасностью для объектов, оказавшихся в зоне влияния подвижных тектонических структур. Наиболее контрастно это проявляется на протяженных объектах, таких как магистральные нефтепроводы и газопроводы, подземные коллекторы и т.п., которые, в силу своей геометрии, непременно пересекают множество тектонических нарушений разных рангов. Одними из первых с данной проблемой столкнулись организации, занимающиеся эксплуатацией магистральных протяженных объектов. В настоящее время по территории Российской Федерации проложено более 200 тыс. км. магистральных нефте- и газопроводов, которые неминуемо пересекают множество региональных и локальных тектонических разломов. По имеющейся статистике, около 80% всех аварий магистральных продуктопроводов приурочены к определенным местам - местам пересечения ими тектонически нарушенных зон. Причем отмечается достаточно высокий процент повторяемости аварийных событий на одних и тех же участках - повторяемость двукратных аварий на одном и том же локальном участке достигает 75-80%, а повторяемость трех- и более кратных доходит до 95%. Ярким примером подобного рода аварийности служит 40-километровый участок магистрального 9-и ниточного газопровода в районе г. Краснотурьинск, на котором за период с 1990 по 1995 г.г. произошло 45 аварий, что составило около 90% всех аварий РАО "Газпром" за этот период. С 1996г. аварии на данном участке практически прекратились, по-видимому, массив горных пород уже реализовал всю накопленную им энергию и в настоящее время происходит новый цикл ее накопления. Также, по имеющейся статистике, к локальным тектоническим разломам приурочены аварии других протяженных инженерных объектов - коллекторов, систем канализации и водоснабжения и др. При расследовании причин подобных аварийных ситуаций было установлено, что технологические параметры, такие как качество металла и железобетонных конструкций, сварных швов, изоляции и пр. не являются истинными причинами многократных аварий. Как правило, дефекты строительства магистральных сооружений проявляются первые полгода - год эксплуатации, далее отказы происходят в основном из-за старения конструкции [2]. Было установлено, что истинными причинами многократных порывов и разрушений магистральных сооружений являются некие факторы, приводящие к снижению технологических усталостных свойств стали труб и железобетонных конструкций. По результатам внутритрубных исследований магистральных продуктопроводов было определено, что около 70% всех дефектов относятся к категории "потери металла", которая включает в себя трещины, каверны, коррозию и пр. [3]. Также интересен тот факт, что на трубопроводах, изготовленных из более пластичных материалов, трещины появляются только через 25 лет эксплуатации, тогда как на трубопроводах, изготовленных из высокопрочных материалов, трещины появляются через 3-4 года эксплуатации [2]. Таким образом, анализируя вышесказанное, можно предположить, что причиной большинства аварий на магистральных трубопроводах оказываются подвижки земной поверхности, которые реализуются по границам тектонических блоков разного иерархического уровня. Как выяснилось позже, геодинамическую активность тектонических нарушений как фактор формирования напряжений в заглубленных конструкциях рассматривают и другие исследователи. Впервые интенсивные локальные аномалии вертикальных и горизонтальных движений, приуроченных к зонам разломов различного типа и порядка, в том числе и в считающихся асейсмичными равнинно-платформенных областях, отмечены в работах Ю.О. Кузьмина [4]. Эти аномальные движения высокоамплитудны (50-70 мм/год), короткопериодичны (0.1-1 год), пространственно локализованы (0.1-1км) и обладают пульсационной и знакопеременной направленностью. Также следует отметить работы, выполненные исследователями научно-практического центра "Сургутгеоэкология" [5]. Ими было установлено, что заглубленные протяженные конструкции испытывают статические напряжения за счет смещений тектонических блоков в коренных породах и динамические разнонаправленные напряжения, вызванные приливными колебаниями земной коры, причем, по имеющейся статистике, количество аварийных ситуаций на продуктопроводах, локализованных на отдельных участках в пределах геодинамических структур, доходит до 80 и более процентов. Связь между современной геодинамикой и аварийностью нефте- и газопроводов прослеживают и другие специалисты [6, 7]. Специалистами "Сургутгеоэкологии" было установлено, что локальные геодинамические структуры проявляют себя как локальные разломы в осадочном чехле. Они проявляются на поверхности в виде линеаментов в ландшафте, в их пределах проявляется повышенная трещиноватость и проницаемость, аномалии магнитного поля и гамма фона, повышенная концентрация радона и продуктов его распада в приземном слое атмосферы. Ширина выделенных геодинамических структур колеблется в пределах 100 - 500 метров, причем концентрированное проявление динамики деформационных процессов происходит в межблоковой части. Эти данные были экспериментально подтверждены в процессе исследования геодинамических процессов на полигонном участке, расположенном в 17 километрах севернее города Сургут, в период с 1998 по 1999 г.г. и проверены в ходе выполнения исследовательских работ на участке Восточно-Таркосалинского месторождения. На сургутском полигонном участке был исследован участок законсервированного нефтепровода, пересеченного локальным тектоническим разломом субмеридионального простирания. На данном участке, в ходе эксплуатации продуктопровода, наблюдались многократные повторяющиеся аварийные ситуации. Так как на данном участке наблюдалось хорошее сцепление трубы с породным массивом, то система трубопровод - порода рассматривалась как сплошная деформируемая среда. Для оценки изменений напряженного состояния в разломных зонах и исследовании динамики деформационных процессов был проведен комплекс исследований, в которых трубопровод использовался в качестве индикатора процессов, происходящих в породном массиве. В ходе выполнения исследовательских работ, в пунктах измерений было произведено шурфование трубопровода со снятием защитной изоляции. На зачищенных местах были установлены магнитные метки, феррозондовые датчики и тензодатчики, по которым производилось непрерывное тензометрирование с целью исследования динамики деформаций во времени. Максимальные напряжения, зафиксированные в процессе исследований на трубопроводах, были значительны и составили для данного участка в разные периоды времени от 80 до 120 МПа, что соответствует деформациям до 99мм на базе измерений около 500метров. Такие напряжения и деформации хотя и не способны привести к разрушению трубопровода, но они приводят к снижению прочностных свойств стали труб за счет возникновения усталостных эффектов, вызванных многократными воздействиями знакопеременных нагрузок. Повторяемость результатов в процессе проводимых исследований была высока, методы измерения достаточно точными, однако они предполагают необходимость доступа к телу трубы с обязательным удалением защитной изоляции и зачисткой поверхности, что неприемлемо в условиях непрерывной транспортировки продуктов. В этих условиях становится актуальным поиск высокоточных и малотрудоемких методов измерения деформаций, происходящих в локальных разломных зонах, без использования трубы в качестве датчика деформаций. Весной 2000г. специалистами ИГД УрО РАН совместно со специалистами НПЦ "Сургутгеоэкология" была рассмотрена возможность использования спутниковой системы GPS геодезического класса для непрерывного мониторинга короткопериодных смещений и деформаций разломных зон. Под непрерывным мониторингом в данном случае понимается длительное (от нескольких часов до нескольких суток) инструментальное наблюдение за изменением пространственных координат реперов наблюдательной станции и пространственно-геометрическими связями между ними во времени, с интервалом между дискретными определениями от нескольких секунд до нескольких десятков минут. В отличие от существующих на сегодняшний день видов геодинамического мониторинга, когда производятся моментные измерения величин смещений и деформаций с периодичностью от одного до нескольких раз в год [8, 9], непрерывный мониторинг позволяет детально изучить кратковременные процессы, протекающие в верхней части земной коры. Период таких процессов составляет от нескольких тысячных герц до десятых герц, что не позволяет производить их изучение традиционными методами, хотя имеется достаточно обширный опыт изучения таких короткопериодных деформаций при помощи наклонометров и других приборов [10-11]. Для непрерывного мониторинга смещений и деформаций земной поверхности целесообразно использование комплексов спутниковой геодезии GPS, так как они имеют ряд преимуществ перед традиционными геодезическими методами. Во-первых, геодезические наблюдения с применением GPS-оборудования можно производить в любое время суток, при любой погоде и при отсутствии прямой оптической видимости между реперами. Во-вторых, мониторинг смещений и деформаций можно производить без непосредственного присутствия оператора, так как в данном случае используются полностью цифровые технологии, и приборы работают в автоматическом режиме. В-третьих, в результате мониторинга в заранее заданный момент времени одновременно определяются все три координаты точки стояния прибора; в случае, когда мониторинг ведется тремя или более GPS-приемниками, образуются жесткие пространственные геометрические связи с другими реперами мониторинговой GPS-сети, на которых производятся измерения. На первом этапе научно-исследовательской работы намечались создание и апробация методики измерений короткопериодных смещений и деформаций с использованием GPS аппаратуры геодезического класса, а также методики обработки и интерпретации результатов измерений. Данная методика должна обеспечивать долговременное непрерывное измерение смещений и деформаций массива с заданным уровнем дискретности измерений и высокой точностью. При разработке методики измерения короткопериодных деформаций массива была предпринята попытка использования существующих наработок по проблеме непрерывного мониторинга состояния массивов и инженерных сооружений с использованием систем спутниковой геодезии. К этому времени уже были известны работы по мониторингу деформаций как природных объектов, таких как оползни (система GOCA) [12], так и крупных инженерных сооружений, таких как протяженные мосты и другие линейные сооружения [13, 14], при мониторинге которых также были выявлены короткопериодные движения земной поверхности с периодом в сутки и короче, особенно четко проявляющиеся вблизи разломных зон. Эти программно-аппаратные комплексы измеряют смещения и деформации исследуемых объектов и конструкций в системе реального времени (RTK - Real Time Kinematics) и в основном служат для раннего оповещения персонала о критических деформациях, возникающих в них. Конструктивно наблюдательные станции представляют собой сеть стационарно установленных RTK GPS-приемников c постоянными каналами кабельной и радиосвязи, постоянно передающих данные измерений на центральный компьютер, который в автоматическом режиме ведет расчет сдвижений и деформаций. Точность определения величин смещений подобного рода системами составляет 2-10 мм в зависимости от используемого оборудования. Однако от подобного опыта измерений пришлось отказаться по нескольким причинам. Рассмотренные наблюдательные станции подобной конструкции стационарны на весь период эксплуатации сооружения или существования природного объекта, лишены мобильности, требуют наличия развитой инфраструктуры, систем кабельной и радиосвязи, центрального диспетчерского пункта, что сильно удорожает стоимость проведения мониторинговых работ. В нашем случае для оценки динамики напряженно-деформированного состояния массива нет необходимости получения данных в режиме реального времени, все расчеты и интерпретацию результатов измерений можно производить в постобработке, однако имеется необходимость в мобильности и относительной низкой стоимости выполняемых работ. В разработанной методике непрерывного мониторинга короткопериодных деформаций массива использовался мобильный комплект GPS-аппаратуры геодезического класса фирмы Trimble Navigation. Характеристика системы GPS и применяемого оборудования кратко дана в работах [9, 15]. Точность автономного определения пространственных координат при использовании одночастотного GPS-приемника составляет в настоящее время около 2-3 метров, что неприемлемо для геодезической практики вообще, а для определения смещений в геомеханических задачах в особенности. Как было отмечено выше, в решаемой задаче точность измерения смещений двух точек друг относительно друга должна быть в пределах 2-3 мм. Требуемую точность определения координат обеспечивает технология дифференциальной GPS, когда одновременно работает 2 или более приемника, установленных на разных точках, ограничивающих измеряемый отрезок. В этом случае один приемник считается базовым (неподвижным), а остальные - определяемыми (движущимися). Одновременная работа минимум двух приемников позволяет определить величину ионосферной и тропосферной поправки, компенсирующей искажение спутниковых радиосигналов при прохождении их через ионосферу и тропосферу Земли. Главным условием работы в режиме дифференциальной GPS является обеспечение одновременного приема сигналов от одних и тех же спутников обоими приемниками. В проводимых исследованиях принимало участие 4 и более приемников Trimble, ведущих одновременную работу на исследуемых интервалах. При последующей попарной обработке это обеспечивает измерение смещений и деформаций одновременно по 6 и более отрезкам на местности. Накопление данных от спутников производилось в один непрерывный файл данных, который при выполнении последующей камеральной обработке соответствующим образом "нарезался". То есть, результаты, выдаваемые на печать через дискретные интервалы, представляли собой усредненные значения смещений за этот промежуток времени. Обеспечение высокой точности определения смещений GPS-технологиями достигалось за счет тщательного планирования спутниковых наблюдений. Выполнение этих требований обеспечивает определение взаимного положения двух приемников с точностью не ниже 2-3мм. Эта точность подтверждалась на специальных базисах, оборудованных стационарными пунктами с известными координатами. Камеральная обработка полевых измерений проводится с использованием пакетов фирменного программного обеспечения GPSurvey и TGOffice, поставляемых с GPS приемниками фирмы Trimble Navigation, программного комплекса Gamit, использующего при обработке измерений глобальных GPS-сетей, а также дополнительного пакета авторских программ, значительно расширяющих возможности самого комплекса. На первом предварительном этапе камеральных работ производилось преобразование файлов данных с непрерывными измерениями в файлы данных с дискретными измерениями. То есть непрерывный массив данных принудительно разделялся на точки измерений и каждой точке присваивался собственный уникальный идентификатор. Данное преобразование осуществлялось на основании существующего нормативного документа [16]. По результатам обработки полученных данных вычисляются вектора между точками и их компоненты (длина вектора, превышение, компоненты Север-Юг и Запад-Восток). Также на этом этапе, по результатам внутреннего контроля, производится отбраковка некачественных измерений. По изменениям величин компонент векторов определяются величины смещений и деформаций соответствующих интервалов в горизонтальной и вертикальной плоскостях, их амплитуды и строятся графики изменения этих величин. В дальнейшем по эти данным производится анализ напряженно-деформированного состояния экспериментального участка. Более подробно методика измерений короткопериодных смещений и деформаций с использование GPS аппаратуры геодезического класса, а также методики обработки и интерпретации результатов измерений приведены в работе [17]. Разработанная методика была впервые опробована летом 2000г. на сургутском полигонном участке, где ранее специалистами "Сургутгеоэкологии" производились определения короткопериодных деформаций массива контактными способами. Основной целью экспериментальных работ было опробование разработанной методики в полевых условиях, определение величин короткопериодных деформаций разломных зон на эталонном участке и сопоставление их с измеренными ранее величинами деформаций. Как отмечалось выше, экспериментальный объект находится в 17километрах от города Сургута на пересечении магистрального нефтепровода с локальным тектоническим нарушением, имеющем субмеридиональное простирание. Динамика смещений и деформаций исследовалась методами спутниковой геодезии по специально разработанной методике. Непосредственно измерялись взаимные вертикальные и горизонтальные смещения точек специальной наблюдательной станции, оборудованной на исследуемом участке. Наблюдательная станция представляла собой систему точек, закрепленных на местности с помощью забивных металлических реперов, применение которых обеспечивает возможность повторения эксперимента. Всего на объекте было оборудовано 15 точек наблюдения. Дополнительно контрольные серии наблюдений производились в нетронутом массиве горных пород за пределами зоны влияния тектонического нарушения. Таким образом, наблюдаемая система точек, закрепленных на местности реперами, охватывала зону разлома, которая по предположениям и данным предшествующих экспериментов, должна обладать наибольшей активностью. Всего на объекте в течение 7 суток было проведено 6 рабочих серий непрерывных измерений величин короткопериодных деформаций разломной зоны и 2 контрольные серии наблюдений в нетронутом массиве. Продолжительность непрерывных серий измерений составляла на разных реперах наблюдательной станции от 16 до 30 часов. При камеральной обработке результатов измерений оценивалась точность определения длин линий и превышений между реперами как по показателям качества получения векторов в геоцентрической системе координат, так и путем расчета невязок замыкания замкнутых контуров. При этом было установлено, что ошибки замыкания не превышают величин 1мм в горизонтальной плоскости и 2мм в вертикальной плоскости. В результате выполненной экспериментальной работы, во-первых, была получена достаточно хорошая корреляция результатов измерений с данными предшествующих исследования, а во-вторых, была доказана эффективность применения комплексов спутниковой геодезии в качестве средства бесконтактного исследования и контроля воздействия динамически напряженных зон на трубопроводы путем непрерывных наблюдений за смещениями и деформациями земной поверхности. Полученные экспериментальные данные о наличии динамических форм движения в зонах тектонических нарушений и вызванных ими знакопеременных деформаций и сдвижений влекут за собой серьезные фундаментальные и прикладные последствия. В фундаментальной области они связаны с усугублением представлений о естественном напряженно-деформированном состоянии массива горных пород. К установленным сегодня гравитационным и тектоническим компонентам добавляется динамическая составляющая. В прикладной области они связаны с воздействием динамических деформаций на искусственные объекты, попадающие на активные тектонические нарушения, которые окажутся под их воздействием, испытывая влияние усталостных эффектов от цикличного нагружения.

КАРЬЕРЫ В последние годы все более актуальными становятся исследования геодинамических процессов, проистекающих в верхней части земной коры и имеющих как естественную, так и техногенную природу. Интерес к исследованиям современных движений и деформаций во многом обусловлен тем, что безопасное ведение человеком хозяйственно-экономической деятельности в массиве горных пород и земной поверхности, возможно только при получении целостной картины о происходящих в недрах Земли и на ее поверхности процессах. Эти сложные многофакторные процессы имеют как естественную, так и техногенную природу, причем в последнее время все большее значение приобретает техногенный фактор, который приводит к негативным изменениям геодинамической и экологической обстановки. Если естественные геодинамические процессы проявляются в основном в виде медленных трендовых подвижек по границам структурных блоков, которые происходят на фоне короткопериодных знакопеременных колебаний массива, прилегающего к ним [1], то техногенные, или наведенные геодинамические процессы, [2] вызваны масштабной деятельностью человека по добыче и переработке полезных ископаемых и изменению окружающей природной среды. Каждая из форм проявления геодинамических процессов способна произвести серьезные нарушения жилых и промышленных объектов, в том числе экологически опасных, таких как атомные и тепловые электростанции, гидротехнические сооружения, магистральные продуктопроводы, химические предприятия. Изучение современных движений и деформаций, происходящих в массиве требует проведения в мониторинговом режиме высокоточных геодезических измерений смещений реперов специально оборудованных наблюдательных станций - геодинамических полигонов. Жесткие требования к проведению подобного рода геодезических работ - обширные территории, охватываемые измерениями, высокий уровень точности определения величин сдвижений и деформаций, короткие периоды между сериями инструментальных измерений, все это предопределяет необходимость использования при проведении исследований современного высокоточного и производительного геодезического оборудования. В институте горного дела УрО РАН исследуются вопросы, связанные с изучением смещений и деформаций горных пород, как естественной природы, так и возникающих при открытой и подземной разработке полезных ископаемых. В последние несколько лет наряду с традиционными геодезическими наблюдениями используются методы спутниковой геодезии. Комбинирование традиционных наземных и спутниковых измерений позволяет достаточно успешно решать поставленные задачи. Спутниковые технологии благодаря своей высокой производительности позволили с высокой периодичностью получать информацию о деформациях земной поверхности на базах от первых метров до нескольких десятков километров, что было затруднительным при использовании традиционных методик измерений и, что очень важно, для обеспечения безопасности и эффективности горного производства. Для проведения спутниковых геодезических измерений используется большой парк одно- и двухчастотной аппаратуры, состоящий из 12 GPS-приемников геодезического класса фирм "Trimble" и "Sokkia". С 1996 года и по сегодняшний день институт проводит геодезический мониторинг смещений и деформаций земной поверхности с использованием GPS-технологий более чем на десяти месторождениях Урала, Сибири, Казахстана. Определения величин смещений и деформаций производятся путем многократных переопределений координат реперов и геометрических элементов - длин и превышений специально оборудуемых наблюдательных станций [3]. Тип, конструкция, размеры и плотность реперов наблюдательной станции выбираются в зависимости от горно-геологических условий исследуемых объектов и поставленных задач фундаментальных и прикладных исследований. Репера наблюдательных станций закладываются согласно соответствующим инструктивным материалам как в области влияния горных разработок, размеры которых достигают первых километров, так и далеко за ее пределами, где репера меньше всего подвержены влиянию техногенных деформационных процессов, в результате чего становится возможным суммарное поле деформаций разложить на поля естественных и техногенных деформаций. Количество пунктов деформационной геодезической сети во многом зависит от площади исследуемой территории, которая, в свою очередь, определяется мощностью месторождения, объемами перемещаемой горной массы и взаимным расположением техногенных объектов. Плотность сети наблюдательных пунктов во многом определяется размерами техногенных объектов, удалением от них, параметрами охраняемых сооружений, попадающих в область влияния горных разработок, тектоникой месторождения и определяется индивидуально в каждом конкретном случае [4]. Как правило, в качестве реперов наблюдательной станции используются уже существующие пункты геодезических сетей – государственной геодезической сети (ГГС) и опорных маркшейдерско-геодезических сетей горного предприятия. Для увеличения плотности сети используются отдельные репера существующих профильных линий, заложенных для изучения процесса сдвижения традиционными геодезическими методами, а также репера, специально закладываемые на разных этапах мониторинговых измерений для уточнения параметров развития процесса сдвижения на отдельных участках. В результате, полученную деформационная сеть горного предприятия можно охарактеризовать как многоуровенную, иерархически подчиненную. Примером такой сети может служить деформационная сеть шахты "Сарановская-Рудная", мониторинг состояния которой комплексами спутниковой геодезии производится с 1996 года по сегодняшний день. Современная наблюдательная станция состоит из более чем 150 реперов, по которым ежегодно производятся спутниковые геодезические измерения с периодичностью до 4 раз в год. Таким образом, при исследовании геодинамических процессов с применением GPS-технологий, в основном используются два пространственно-временных режима - разовое переопределение исходных координат пунктов ГГС и опорных геодезических сетей, и измерение величин смещений и деформаций в мониторинговом режиме. Наиболее часто при выполнении продолжительных исследований находит применение комбинированный режим, когда при выполнении нулевого цикла работ переопределяются исходные координаты реперов наблюдательной станции, а при выполнении последующих циклов измерений определяются смещения и деформации, произошедшие за определенный период времени [5]. Поскольку исходные координаты пунктов ГГС и опорных сетей предприятия определялись еще до начала разработки месторождения полезных ископаемых, или на первых этапах его освоения, то в результате разового переопределения координат реперов определяются величины деформаций массива горных пород, произошедшие за достаточно продолжительные интервалы времени - как правило, десятки лет. Однако в этом случае приходится сталкиваться с достаточно трудноразрешимыми вопросами отделения реальных смещений пунктов сети, вызванных деформациями земной поверхности, от остаточного влияния источников ошибок, поскольку точность методов спутниковой геодезии в 3-5 раз выше, чем точность традиционных геодезических методов. Данная задача, в зависимости от конфигурации исходных геодезических сетей, условий проведения измерений и полноты исходного материала прежних лет, может быть достаточно корректно решена с применением специально разработанных методик, в основе которых лежат различные точки зрения на процедуру анализа взаимного положения пунктов геодезической сети. Также достаточно сложной, а зачастую неразрешимой задачей является переопределение высотных отметок пунктов сети, поскольку при производстве работ методами спутниковой геодезии определяются высоты и превышения пунктов над эллипсоидом, а не над геоидом, как это принято в традиционной геодезии. В случае, когда геодезические работы производятся на местности со спокойным рельефом, данная задача корректно решается при использовании стандартных моделей геоида, таких как EGM96. Однако для гористой местности с большими перепадами высот, местности с локальными аномалиями гравитационного поля, вызванного наличием в недрах больших объемов полезного ископаемого с высоким удельным весом, такое решение неприемлемо, и на сегодняшний день задача не имеет корректного решения, хотя уже имеются первые наработки по моделированию поверхности геоида на основе анализа DEM (Digital Elevation Model). Еще одной проблемой, с решением которой приходится сталкиваться как при разовых переопределениях координат деформационных сетей, как и при производстве измерений в мониторинговом режиме, является проблема выбора из всех пунктов сети тех, положение которых остается стабильным достаточно продолжительное время. Наличие таких пунктов в сети необходимо, когда ставится задача определить пространственные вектора смещений; в этом случае производится строгое уравнивание сети с наложением определенных условий - фиксацией плановых координат и высот опорных пунктов сети. Однако, как показывает практика, это не всегда возможно сделать, поскольку ГГС и опорные сети предприятий также подвержены деформированию, и поэтому, с одной стороны, использовать исходные данные следует крайне осторожно, а с другой стороны, фиксация координат части пунктов сможет значительно исказить уравниваемую сеть, что приведет к получению некорректного результата. Для того, чтобы этого избежать, переопределяются не координаты пунктов сети, а фиксируются изменения пространственных геометрических связей между пунктами сети, которые можно измерить непосредственно. Этого, как правило, вполне достаточно для построения суммарного деформационного поля и изучения основных закономерностей изменения напряженно-деформированного состояния массива на исследуемой территории. В дальнейшем, при анализе величин деформаций, из всех пунктов сети выделяются пункты, которые от цикла к циклу не изменяют своего взаимного положения, и которые могут быть использованы в качестве опорных, в результате чего постепенно, от серии к серии мониторинговых наблюдений, картина динамики смещений и деформаций будет уточняться. Для успешного применения комплексов спутниковой геодезии при изучении процесса деформирования породного массива большое значение имеет организация и планирование полевых работ, особое внимание уделяется конструкции реперов наблюдательной станции. Как уже отмечалось выше, исследование деформаций породного массива в мониторинговом режиме, подразумевает многократное, от цикла к циклу, выполнение точных геодезических измерений на одних и тех же пунктах сети, по одной программе работ с дальнейшим анализом изменений геометрических взаимосвязей между реперами. Из этого вытекает важная особенность геодинамических полигонов: возможность детального изучения условий проведения наблюдений на каждом пункте сети и использование их при планировании времени и периода проведения спутниковых измерений, специальная подготовка отдельных пунктов сети с целью устранения причин затрудненного или некачественного приема спутникового радиосигнала. Поскольку одним из самых главных требований производства высокоточных геодезических работ с применением GPS-оборудования является хорошая радиовидимость на всех определяемых пунктах, которая обеспечивается следующими факторами: низким значением коэффициента PDOP, высоким соотношением "сигнал/шум", качеством радиосигнала и отсутствием потери целых циклов при приеме радиосигнала [6], необходимо учитывать эти факторы заранее. Некоторые факторы, определяющие качество выполнения наблюдений, можно спрогнозировать заранее, путем использования специального программного обеспечения. Распределение количества видимых спутников и изменение коэффициента PDOP во времени определяется заблаговременно по имеющимся эфемеридам спутников, а поскольку известны условия наблюдений на каждом пункте сети, составляются индивидуальные картограммы препятствий прохождения спутникового радиосигнала, с использованием которых достигается высокий уровень планируемых и фактических условий наблюдения на конкретном пункте. В результате планирования определяются промежутки времени благоприятные и неблагоприятные для производства наблюдений. Как показывает практика, благоприятными для производства измерений являются промежутки времени, когда обеспечивается прием спутникового радиосигнала от 7-8 и более спутников при коэффициенте PDOP меньшем 4. При таких условиях наблюдений возможно проводить измерения на миллиметровом уровне точности. Как отмечалось выше, для определения современных геометрических параметров сети наблюдательных станций используется комплекс спутниковой геодезии GPS, состоящий из 12 приемников геодезического класса. При условии одновременной работы 2 и более GPS-приемников по результатам разности фаз спутникового радиосигнала возможно определение с миллиметровой точностью компонент вектора между двумя и более реперами наблюдательной станции. Жесткое требование условия одновременной работы 2 и более приемников спутникового радиосигнала в технологиях дифференциальной GPS обусловлено необходимостью исключения из результатов обработки погрешностей, вызванных влиянием ионосферы и тропосферы Земли. Под вектором в данном случае подразумевается результат обработки GPS-данных, представляющий собой линию с известными геоцентрическими компонентами ΔX, ΔY, ΔZ между двумя точками, находящимися на земной поверхности, относительно центра Земли в математическом эллипсоиде WGS-84. В нашем случае, при одновременной работе большого количества GPS-приемников, при проведении полевых измерений образуется достаточное количество замкнутых геометрических построений, анализ которых позволяет оценить качество проведенных геодезических измерений. Определение векторов производится в статическом и быстростатическом режиме. Как показывают исследования Federal Geodetic Control Subcommitettee (FGCS) и обширная практика выполнения практических работ, при выполнении геодезических работ на базисах менее 20км для достижения точности измерения, равной ± 3мм + 0.01 ppm, достаточно произвести накопление данных на пункте в течение 13-20 минут. Продление времени сеанса наблюдений до 30-60 минут позволяет получить избыточные данные, которые в дальнейшем используются при анализе точности геодезических построений. Поскольку реальным контролем точности геодезических построений являются независимые измерения на определяемых пункта, то программа полевых измерений, как правило, предполагает проведение повторных измерений на ряде пунктов сети. Камеральная обработка результатов измерений логически разбивается на два этапа - постобработка и уравнивание геодезической сети. На этапе постобработки вычисляются вектора - базовые линии между наблюдательными пунктами сети. Вычисление векторов производится с использованием прецизионных спутниковых эфемерид, что позволяет в ряде случаев значительно повысить точность и надежность определения геометрических параметров сети. Наличие избыточных измерений позволяет получить несколько вариантов обработки одного и того же вектора сети, благодаря чему повышается качество обработки. Контролем качества камеральных работ на данном этапе являются ряд внутренних контрольных параметров вычисления векторов, дублирующиеся определения векторов и контроль невязок замкнутых геометрических построений. При вычислении векторов авторами использовалось различное программное обеспечение - GPSurvey и TGOffice фирмы "Trimble Navigation", Bernese и Gamit, использующееся при обработке результатов глобальных деформационных сетей, однако существенных различий в результатах обработки выявлено не было. Совокупность нескольких вычисленных векторов представляет собой пространственную GPS-сеть на поверхности математического эллипсоида. В зависимости от поставленных задач эта сеть может быть уравнена различными способами и в различных системах координат. В случае, если наблюдательная станция состоит из вновь заложенных реперов, первоначальные координаты которых неизвестны, производится свободное уравнивание сети, в условной системе координат, в результате чего определяются уравненные значения длин линий и превышений между пунктами сети, изменение которых во времени определяет деформирование исследуемой территории. В случае использование в качестве части реперов наблюдательной станции пунктов ГГС и опорных сетей предприятия задача усложняется, однако, как это отмечалось выше, корректное ее решение достигается с использованием пакета авторских методик. В результате проведенных инструментальных геодезических измерений на исследуемом участке массива и камеральной обработке полевого материала становятся доступны данные о современном состоянии земной поверхности, координатах реперов наблюдательной станции на момент проведения съемки и деформировании земной поверхности в интервалах между реперами. По изменению пространственных координат реперов наблюдательной станции вычисляются полные вектора сдвижения точек земной поверхности в зоне техногенного влияния горных разработок. По величине и направлению действия векторов смещения реперов определяются скорости сдвижения массива горных пород. Путем специального анализа векторной картина поля сдвижений делаются первоначальные выводы о наличие на исследуемом участке структурных нарушений и их активности, поскольку деформации породного массива реализуются именно по этим ослаблениям. Сопоставление современной картины распределения полных векторов смещений с картинами, полученными во время предыдущих серий измерений, позволяет также делать экстраполяцию фактических данных о процессе сдвижения и давать предварительные прогнозы о развитии процесса. По изменению расстояний между реперами наблюдательной станции и превышений между ними определяются параметры пространственного поля вертикальных и горизонтальных деформаций, а также скорости их приращения. Путем специального анализа полученной картины распределения деформаций по исследуемому участку выявляются основные закономерности процесса сдвижения массива горных пород, выделяются участки с аномальными значениями поля деформаций, на которых в дальнейшем сгущается сеть наблюдательной станции, делаются прогнозные оценки о развитии деформационной обстановки на различные промежутки времени. По изменению во времени основных компонент поля пространственных деформаций вычисляются приращения тензоров поля естественных и техногенных напряжений. Путем специального анализа суммарные тензора приращения напряжений раскладываются на тензоры поля естественных и техногенных напряжений. Путем соответствующей группировки параметров тензоров напряжений в массиве выделяются основные блочные массивы и уточняются границы между ними. При совместном анализе полей напряжений и деформаций, полученных путем мониторинговых измерений в различные периоды времени, создается картина закономерностей формирования вторичного напряженно-деформированного состояния исследуемого массива, что позволяет получить фундаментальные знания о природе как естественных, так и наведенных техногенных деформационных процессов, происходящих в массиве, решать задачи по безопасной эксплуатации месторождений полезных ископаемых и объектов инфраструктуры, попадающих в зону влияния горных разработок. Полученные в результате экспериментальных работ данные о современном напряженно-деформированном состоянии массива горных пород и закономерностях его изменения во времени с одной стороны, дают новые фундаментальные знания о природе естественных деформационных процессов, протекающих в верхней части земной коры, и влиянии на формирование напряженного состояния массива масштабной техногенной деятельности. С другой стороны, полученные данные служат для прогноза развития процесса сдвижения и принятия целого комплекса технических решений по безопасной и эффективной разработке месторождений. К таким решениям относятся вопросы охраны и безопасной эксплуатации объектов, попадающих в область вредного влияния горных разработок, когда необходимо произвести полную выемку полезного ископаемого и сохранить объекты, находящиеся над рудными залежами; управления процессом сдвижения горных пород, когда специальным порядком отработки камер процесс сдвижения направляется в нужное направление и ликвидируются в массиве зоны концентрации напряжений, которые могут служить источником повышенной геомеханической опасности. Данные о фактическом состоянии массива горных пород используются при проектировании мест заложения горных выработок, параметров очистных выемок, выбора оптимальной системы разработки месторождения, а также при проектировании мероприятий по изменению гидрогеологического режима участка массива. В результате проведения геодезических измерений в мониторинговом режиме всегда доступна информация о современном состоянии маркшейдеско-геодезических сетей горного предприятия, что положительно сказывается на качестве маркшейдерского обслуживания. Таким образом, вышеописанный комплекс мероприятий по диагностике и мониторингу напряженно-деформированного состояния массива горных пород современными геодезическими методами позволяет получить и в дальнейшем уточнить как модельные, так и фактические точные данные о геомеханическом состоянии горного массива в зоне техногенного влияния масштабных горных работ на любой промежуток времени разработки месторождения. В заключение следует отметить, что применение современных методов традиционной и спутниковой геодезии для наблюдений за процессом сдвижения земной поверхности на горных предприятиях позволило нам проводить исследования на качественно более высоком уровне. В настоящее время измерениями охвачена не только ближняя зона техногенного воздействия добычи полезных ископаемых - мульда сдвижения при подземном способе разработке и прибортовой массив при открытом способе разработке, наблюдения в которой производились достаточно длительный период с использованием традиционных геодезических методов, но и дальняя зона влияния горных разработок, простирающая до нескольких десятков километров, в которой ранее измерения либо не проводились совсем, либо проводились в недостаточных объемах по причине высокой трудоемкости подобных работ. Измерения, проводимые с использованием современных геодезических комплексов показали свою высокую эффективность для решения задач геомеханики, благодаря чему стали возможными не только дискретные измерения, но и регулярный мониторинг деформаций и напряжений, происходящих в земной коре.