Энергосберегающая технология сольвентной деасфальтизации нефтяных остатков 05. 17. 07 Химия и технология топлив и специальных продуктов

Вид материалаДиссертация
Таблица 2 - Состав фаз в разделителе при дополнительном подогреве нижней фазы
Условия разделения
Подобный материал:
1   2   3   4   5   6   7   8   9

Для верхней пропановой фазы наблюдается корреляция между содержанием в ней деасфальтизата и фракционным составом деасфальтизата. Чем меньше температура выкипания 5-10% масс. деасфальтизата, тем больше содержание масла в пропане.


На рис.3,4 представлены результаты разделения смеси пропана, бутана и деасфальтизата на лабораторной установке АРФ-2.

В экспериментах использовали пропан-бутановую смесь, содержащую 32% пропана и 68% суммы бутанов. Деасфальтизат был наработан из гудрона западно-сибирской нефти на пилотной установке деасфальтизации ЭПД-2 с применением в качестве растворителя этой же пропан-бутановой смеси. Как видно из представленных результатов, для пропан-бутанового растворителя качественный характер изменения состава фаз в сверхкритическом разделителе от режима его работы такой же, что и для пропанового растворителя.



Рис. 3 Содержание деасфальтизата в верхней фазе сверхкритического разделителя

Температура регенерации, °С: 1 – 137; 2 – 145; 3 – 153; 4 – 161.




Рис. 4 Содержание растворителя в нижней фазе сверхкритического разделителя

Температура регенерации, °С: 1 – 137; 2 – 145; 3 – 153; 4 – 161.


От состава растворителя сильно зависит режим проведения сверхкритического разделения деасфальтизатного раствора. Если для пропанового растворителя оптимальный режим сверхкритической регенерации находится в области 120°С и 5,0 МПа, для пропан-бутанового растворителя качественное разделение может происходить, как это видно из рис.3,4, при температуре 140–150°С и давлении 4,2-4,5 МПа.

На рис. 3,4 сплошной линией представлены результаты расчетов состава фаз, полученные с помощью уравнений (1). Видно, что результаты термодинамических расчетов состава фаз хорошо согласуются с опытными данными, полученными в статических условиях.

Результаты исследования процесса сверхкритического фазоразделения в промышленных условиях.

Для исследования процесса сверхкритического фазоразделения в промышленных условиях были проведены в 1991-1994г.г. три серии опытно-промышленных экспериментов на установке пропановой деасфальтизации 36/5 ЗАО «РНПК» (рис. 1).

Непосредственные визуальные наблюдения за процессом фазоразделения на пилотном аппарате позволили установить общую гидродинамическую картину образующихся в разделителе потоков и их влияние на степень фазоразделения. Результаты опытов, проведенных в широком диапазоне изменения параметров режима разделения (t=100-140°C, P=4,0-6,5МПа), позволили выявить основные закономерности влияния температуры, давления, высоты уровня фаз, градиента температуры в аппарате на чистоту потока растворителя, выводимого с верха аппарата.

В частности, было установлено, что имеет место резкое увеличение выноса деасфальтизата с растворителем при превышении давления в аппарате выше некоторого порогового значения. Увеличение температуры процесса фазоразделения приводит к увеличению порогового давления. Путем применения внутренних устройств можно существенно расширить область варьирования параметров режима, в котором осуществляется удовлетворительное отделение растворителя от деасфальтизата.

Как в лабораторных, так и опытно-промышленных экспериментах прослеживается общая закономерность улучшения степени разделения деасфальтизатного раствора (уменьшение содержания масла в верхней фазе и уменьшение содержания пропана в нижней фазе) с ростом температуры и понижением давления, что согласуется с результатами термодинамических расчетов.

Влияние гидродинамических факторов хорошо прослеживается при сравнении результатов разделения, полученных в лабораторных опытах, в которых процесс фазоразделения осуществляется в статических условиях, и данных опытно-промышленных экспериментов.

В статических условиях пороговое давление Рн, выше которого содержание деасфальтизата в верхней фазе пропана больше нормы (0,5%), зависит только от температуры, т.е. Рнн (Т). Например, при Т= 120 0С Рн(120 0С) = 6,0 МПа (см. табл. 1). В динамических условиях это пороговое давление Рн(Т) зависит так же от времени пребывания деасфальтизатного раствора в разделителе t и наличия в нем коагулирующих устройств. Так, для пустотелых разделителей объемами 2л (t ≈ 2 мин.) и 0,135л (t ≈ 10с) величина Рн (1200С) составляет 5,4 и 4,8 МПа, соответственно.

При наличии коагулирующих устройств в разделителе, величина Рн (Т) приближается к своему статическому значению и составляет при 120 0С 5,8 МПа. Таким образом, оснащение аппарата сверхкритического фазоразделения коагуляторами позволяет в динамическом режиме фазоразделения обеспечить достижение верхнего предела, определяемого термодинамическими условиями, степени чистоты отделяемого растворителя.

Показано, что при дополнительном подогреве нижней фазы в разделителе на 20-25°С достигается снижение содержания растворителя в деасфальтизате в 2 раза (табл. 2). При этом содержание масла в верхней фазе не превышает 0,4 %.

В 2007-2008г.г. на установке 36/2 ОАО «Уфанефтехим» после проведения реконструкции узла регенерации растворителя с переводом на сверхкритический режим работы по исходным данным ГУП «ИНХП РБ» был проведен опытно-промышленный пробег с целью определения достигнутых технико-экономических показателей ее работы. Показано, что содержание деасфальтизата в регенерированном в сверхкритическом разделителе растворителе не превышает 0,5%, а содержание растворителя в деасфальтизате ниже 10-12%. Таким образом, результаты пробега подтвердили правильность научно-технических разработок, программ расчетов и компьютерных моделей процесса регенерации растворителя при сверхкритическом режиме, использованных при разработке исходных данных на проектирование реконструкции.

Таблица 2 - Состав фаз в разделителе при дополнительном подогреве нижней фазы




опытов

Условия разделения


Состав нижней

фазы, % мас

давле-ние,

МПа

температура, оС


пропан


масло

верхней фазы

нижней

фазы

1

5,0

110

121

10,0

90,0

2

5,0

109

129

6,3

93,7

3

5,0

111

136

4,1

95,9

4

5,0

120

125

9,2

90,8

5

5,0

120

132

5,6

94,4

6

5,0

119

140

4,8

95,2