10. Сільське господарство та його вплив на довкілля
Вид материала | Документы |
Содержание11.3. Вплив на навколишнє середовище енергетичної галузі Вплив на довкілля ГЕС. 11.4. Використання альтернативних джерел енергії Енергія сонця. Вітрова енергія. Енергія річок. |
- Иків, які впливають на природні компоненти довкілля (забруднення, туризм, транспорт,, 21.71kb.
- Сільське господарство України, 166.58kb.
- А сільське господарство, лісове господарство та рибне господарство, 2896.39kb.
- Реферат на тему, 137.15kb.
- Оцінка рівня екологічності товарів І мотивація його підвищення, 287.01kb.
- Сільське господарство, 1675.54kb.
- Удк 504. 054: 477. 81 Клименко М. О., д с. г н., професор, Борщевська І. М., асистент, 82.13kb.
- «сільське господарство україни першої чверті ХХ століття та його науково-освітнє забезпечення, 169.24kb.
- Програма підтримки малого підприємництва в гусятинському районі, 587.9kb.
- Паспорт спеціальності 08. 00. 02 – Світове господарство І міжнародні економічні відносини, 23.47kb.
11.3. Вплив на навколишнє середовище енергетичної галузі
Вплив на довкілля ТЕС.
Виробництво електроенергії на ТЕС супроводжується виділенням великої кількості теплоти, тому такі станції, як правило, будуються поблизу міст і промислових центрів для використання (утилізації) цієї теплоти. Зважаючи на обмеженість світових запасів мінерального палива, вчені й технологи продовжують працювати над поліпшенням параметрів енергоблоків, підвищенням їхніх коефіцієнтів корисної дії (ККД), що забезпечує ощадливіше витрачання палива. Так, істотну економію палива дає збільшення одиничної потужності енергоблоків. Сьогодні на ТЕС установлюються енергоблоки потужністю 1000—1200 МВт. Сучасна технологія дає змогу підвищити цю потужність до 3000 МВт, що заощадить кілька процентів палива. Подальше зростання потужності блоків (до 5000 МВт) можливе в разі запровадження так званих кріогенних генераторів, які охолоджуються зрідженим гелієм.
Знизити питому витрату палива вдається також підвищенням ККД генераторів ТЕС. Нині максимальне значення ККД становить близько 40 %, але в принципі його можна збільшити до 60 % за рахунок упровадження перспективних магнітогідродинамічних (МГД) генераторів, дослідні зразки яких сьогодні випробовуються в ряді країн.
Спалювання мінерального палива супроводжується сильними забрудненнями довкілля. Розглянемо головні з них.
Забруднення атмосфери газовими й пиловими викидами.
Під час спалювання вуглеводневого палива в топках ТЕС, а також у двигунах внутрішнього згоряння виділяється вуглекислий газ, концентрація якого в атмосфері збільшується приблизно на 0,25 % за рік. Це спричинює розігрівання атмосфери за рахунок парникового ефекту . З труб ТЕС і вихлопних труб автомобілів у атмосферу викидаються також оксиди сірки й азоту, внаслідок чого випадають кислотні дощі. Атмосфера забруднюється й дрібними твердими частинками золи, шлаку, не повністю згорілого палива (сажа).
Для зменшення шкоди від цих забруднень вдаються до таких технологічних заходів:
– вугілля перед його спалюванням у топках ТЕС очищають від сполук сірки;
–вловлюють із диму ТЕС оксиди сірки й азоту, пропускаючи його крізь спеціальні поглиначі;
– частинки золи й сажі вловлюють за допомогою установок типу «Циклон» та іншими способами;
– для зменшення токсичності вихлопних газів автомобілів застосовують регулювання двигунів, переходять на «екологічно чисті» марки палива, встановлюють на автомобілях спеціальні каталізатори, що допалюють чадний газ до вуглекислого, і т. д.
Радіоактивне забруднення. У викопному вугіллі й пустих породах містяться домішки природних радіоактивних елементів (урану, торію та ін.). Після спалювання вугілля ці елементи концентруються в частинках золи, яка виявляється більш радіоактивною, ніж вихідне вугілля й пусті породи (сланці тощо). Таким чином відбувається радіоактивне забруднення атмосфери й земної поверхні. Щоправда, воно не настільки небезпечне, як радіоактивне забруднення від АЕС (див. нижче), оскільки у вугіллі й вугільних породах містяться радіоактивні ізотопи, що існують у біосфері впродовж мільярдів років, і до них живий світ пристосувався. Більшість рослин і тварин не нагромаджують ці ізотопи у своєму організмі, на відміну від штучних радіонуклідів, які викидаються АЕС. Розроблені методи очищення відхідних газів ТЕС від частинок золи дають змогу зменшити це забруднення в 100—200 разів і звести його в такий спосіб майже до фонового рівня.
Забруднення земної поверхні відвалами шлаків і кар'єрами.
Після спалювання в топках ТЕС вугілля залишається багато твердих відходів (шлаку, золи). Вони забирають великі площі землі, забруднюють підземні й поверхневі води шкідливими речовинами. Ще більші ділянки землі порушуються величезними вугільними кар'єрами. Так, шлакові відвали й терикони пустих порід лише в Донбасі займають площу понад 50 тис. га, і вона дедалі збільшується.
Зменшення шкоди від такого забруднення досягається утилізацією (корисним використанням) шлаків і пустих порід, з яких виготовляють будівельні матеріали, засипають ними яри, болота й кар'єри під час рекультивації. Ефективними є й економічні санкції, зокрема введення високої платні за порушення земель, особливо родючих. Завдяки цим обмеженням у більшості західних країн відмовилися від кар'єрного способу видобування корисних копалин у сільськогосподарських районах, оскільки платня за землю виявляється вищою, ніж та вигода, яку може дати відкритий спосіб розробки родовища порівняно з шахтним. В Україні питання про відведення сільськогосподарських земель під будівництво великого кар'єру або ТЕС вирішує найвищий законодавчий орган країни — Верховна Рада.
Вплив на довкілля АЕС.
атомна енергетика настільки згубно впливає на біосферу, а потенційна небезпека аварії на АЕС така велика (адже це — техніка, й не можна дати стопроцентної гарантії її безвідмовності), що обстоювати цей спосіб добування енергії недопустимо й аморально.
Паливний енергетичний цикл АЕС передбачає видобування уранової руди й вилучення з неї урану, переробку цієї сировини на ядерне паливо (збагачення урану), використання палива в ядерних реакторах, хімічну регенерацію відпрацьованого палива, обробку й поховання радіоактивних відходів. Усі ці операції (рис. 4. 1.) супроводжуються небезпечним радіоактивним забрудненням природного середовища.
Жоден із запропонованих методів зберігання радіоактивних відходів нині не є задовільним. Проблему необхідно вирішити до того, як різко збільшиться кількість атомних електростанцій, що закриваються.
Забруднення починається на стадії видобування сировини, тобто на уранових рудниках. Після вилучення урану з руди залишаються величезні відвали слабко радіоактивних пустих порід — до 90 % добутої з надр породи. Ці відвали забруднюють атмосферу радіоактивним газом радоном, небезпечним для біоти (наприклад, медики довели, що внаслідок вдихання повітря з підвищеним умістом радону в ссавців розвивається рак легень).
Кількість радіоактивних відходів зростає на стадії збагачення уранової руди, з якої виготовляють твели — спеціальні елементи, що виділяють тепло, котрі надходять потім на АЕС. У реактор типу РБМК (сумнозвісний після аварії на Чорнобильській АЕС) завантажується близько 180 т таких твелів, які в результаті роботи реактора перетворюються на високорадіоактивні відходи. АЕС — це, по суті, підприємство, яке поряд з електроенергією виробляє величезну кількість украй небезпечних речовин. Відпрацьовані твели кілька років зберігаються на території АЕС у спеціальних басейнах із водою, поки трохи знизиться їхня радіоактивність, після чого в особливих контейнерах спеціальними поїздами їх перевозять на фабрику для регенерації ядерного палива. Тут твели обробляють, вилучаючи з них уран, який іще не «вигорів», і виготовляють із нього нові твели.
Сьогодні на всіх АЕС України нагромаджено до 70 тис. м3 радіоактивних відходів, 65,5 млн. т — у видобувній та переробній урановій промисловості, 5 тис. м3 — в Українському державному об'єднанні «Радон» та 1,1 млрд. м3 відходів міститься в зоні відчуження ЧАЕС. Близько 85—90 % радіоактивних відходів належать до категорії низько- та середньоактивних.
Сказане цілком стосується й самих АЕС. Через 25—30 років експлуатації все їхнє обладнання, апаратура, місткості, приміщення, транспортні засоби й т. д. стають настільки радіоактивними, що їх необхідно демонтувати й поховати на сотні років. А для поховання лише одного реактора потрібно близько 40 га землі.
Немає жодного іншого енергоносія, використання якого залишало б хоч приблизно стільки відходів, скільки дає ядерна енергетика, і немає таких відходів, які за ступенем небезпечності хоча б приблизно нагадували продукти розщеплення. (Е. Гауль, німецький учений-атомник).
В Україні за роки незалежності не вдалося створити замкненого циклу виробництва палива для АЕС і поховання ядерних відходів.
АЕС виробляють сотні видів радіоактивних речовин, яких раніше не було в біосфері, й до яких живі істоти не пристосовані. Так, після аварії на Чорнобильській АЕС в атмосферу було викинуто близько 450 видів радіонуклідів. Серед них багато довгоіснуючих, таких як цезій-137 (період напіврозпаду 80 тис. років) і стронцій-90 (період напіврозпаду 20 тис. років). Вони за своїми хімічними властивостями подібні до калію й кальцію, які відіграють велику роль у біохімічних процесах. Живі організми не можуть відрізнити ці ізотопи від калію та кальцію й нагромаджують їх, що є причиною найнебезпечнішого внутрішнього опромінення, яке викликає тяжкі захворювання й шкідливі мутації.
Штучний елемент плутоній (період напіврозпаду перевищує 20 тис. років!), який нагромаджується в атомних реакторах, — це найтоксичніша речовина з усіх, що будь-коли створені людиною: 450 г плутонію (за об'ємом це кулька розміром з апельсин) достатньо, щоб убити 10 млрд. людей; 1 мкг цієї речовини викликає рак легень у людини. А нині на Землі в ядерних боєголовках, відпрацьованих твелах та інших відходах АЕС накопичено тисячі тонн цієї суперотрути.
Нагромадження в природі невластивих для неї радіоактивних речовин украй шкідливо діє на біосферу. В зонах, забруднених унаслідок аварії на ЧАЕС, уже сьогодні спостерігаються масові аномалії: у рослин — гігантизм листя дерев, такі зміни деяких рослин, що важко визначити їх вид; у тварин — народження нежиттєздатних мутантів (поросят без очей, лошат із вісьмома кінцівками тощо); у людей і тварин — пригнічення функцій імунної системи, в результаті чого ускладнився перебіг таких захворювань, як грип, запалення легень, збільшилася смертність від «звичайних» захворювань.
До сказаного слід додати, що АЕС спричинюють також велике теплове забруднення, особливо гідросфери. Лише мала частина теплоти, що виділяється під час роботи реакторів, може бути утилізована й перетворена на електроенергію. Левова ж її пайка у вигляді гарячої (45 °С) води й пари викидається у водойми та в повітря.
Вплив на довкілля ГЕС.
У наш час ГЕС виробляють близько 20 % електроенергії у світі. Гідроенергетичний потенціал України становить 44,7 млрд. кВт/год, проте лише 21,5 млрд. кВт/год припадає на ресурси, які технічно можливо використати (46 % їх сконцентровано в басейні Дніпра, по 20 % — у басейнах Дністра й Тиси, 14 % — інших річок). Щодо економічно доцільних для використання гідроенергоресурсів, то вони загалом не перевищують 16—17 млрд. кВт/год (61 % зосереджено в басейні Дніпра, 22 % — Тиси, 17 % — Дністра). Отже, за запасами гідроенергоресурсів Україна посідає досить скромне місце серед інших держав світу, Європи та СНД.
Установлена потужність ГЕС України становить 4,7 млн. кВт, 98 % якої припадає на гідроелектростанції Дніпровського каскаду та Дністровської ГЕС.
Порівняно з ТЕС і АЕС гідроелектростанції мають низку переваг:
– вони зовсім не забруднюють атмосферу;
– поліпшують умови роботи річкового транспорту;
– працюючи в парі з ТЕС, беруть на себе навантаження під час максимального (пікового) споживання електроенергії;
– агрегати ГЕС уводяться в дію дуже швидко, на відміну від агрегатів ТЕС, яким потрібно кілька годин для розігрівання й виходу на робочий режим (або ж треба утримувати один з агрегатів ТЕС у «гарячому» режимі, витрачаючи дефіцитне паливо). Разом із тим ГЕС, особливо ті з них, що побудовані на рівнинних річках, завдають шкоди довкіллю.
На Дніпрі, наприклад, водосховищами затоплено величезні площі найродючіших у Європі земель: Київським — 922 км2, Канівським — 675, Кременчуцьким — 2250, Дніпродзержинським — 567, Дніпровським — 410, Каховським — 2155 км2. У сумі це становить майже 7000 км2 — чверть території Бельгії! Важко уявити, скільки сільськогосподарської продукції недоодержала Україна через це. Із затоплюваних ділянок довелося відселяти жителів сотень сіл, прокладати нові дороги й комунікації тощо. Пішло під воду багато історичних і ландшафтних пам'яток.
У місцевостях, розташованих поблизу водосховищ, піднімається рівень ґрунтових вод, заболочується територія, виводяться із сівозмін великі площі землі.
На водосховищах тривають обвали берегів, які на окремих ділянках відступили вже на сотні метрів.
Греблі перетворили Дніпро на низку застійних озер, що мають слабкий водообмін та погану самоочищуваність і стають уловлювачами промислових забруднень.
Дуже потерпають від гребель мешканці річок — планктон і риба. Риба не може проходити крізь греблі до місць своїх звичних нерестовищ, які до того ж стають непридатними для нересту через заглиблення. Багато риби й планктону гине в лопастях турбін. Водосховища, забруднені стоками й добривами, що змиваються з полів, улітку нерідко «цвітуть», що спричинює масову загибель риби та інших мешканців водойм.
Якщо підрахувати всі ці збитки від будівництва й роботи ГЕС на рівнинних територіях, стає зрозуміло, що твердження про «найдешевший кіловат», який нібито дають ГЕС, не відповідає дійсності. Очевидно, що великі ГЕС раціонально будувати лише в гірських районах. Можливо, в майбутньому нам чи нашим нащадкам доведеться спускати воду з деяких «рукотворних морів» на тому ж Дніпрі.
11.4. Використання альтернативних джерел енергії
Нестача викопних енергетичних ресурсів у розвинених країнах світу веде до розширення ефективного використання альтернативних джерел енергії.
Енергія сонця.
Майже всі джерела енергії так або інакше використовують енергію Сонця: вугілля, нафта, природний газ суть не що інше, як “законсервована” сонячна енергія. Вона поміщена в цьому паливі з незапам'ятних часів; під дією сонячного тепла і світла на Землі росли рослини, накопичували в собі енергію, а потім в результаті тривалих процесів перетворилися на паливо, що вживалося сьогодні. Сонце щороку дасть людству мільярди тонн зерна і деревини. Енергія річок і гірських водопадів також походить від Сонця, яке підтримує кругообіг води на Землі.
У всіх приведених прикладах сонячна енергія використовується побічно, через багато проміжних перетворень. Принадно було б виключити ці перетворення і знайти спосіб безпосередньо перетворювати теплове і світлове випромінювання Сонця, падаюче на Землю, в механічну або електричну енергію. Всього за три дні Сонце посилає на Землю стільки енергії, скільки її міститься у всіх розвіданих запасах викопних палив, а за 1 з - 170 млрд. Дж. Велику частину цієї енергії розсіює або поглинає атмосфера, особливо хмари, і лише третина її досягає земній поверхні. Вся енергія, що випускається Сонцем, більше тієї її частині, яку отримує Земля, в 5000000000 разів. Але навіть така “нікчемна” величина в 1600 разів більше енергії, яку дає решта всіх джерел, разом узяті. Сонячна енергія, падаюча на поверхню одного озера, еквівалентна потужності крупної електростанції.
Сьогодні для перетворення сонячного випромінювання в електричну енергію ми маємо в своєму розпорядженні дві можливості: використовувати сонячну енергію як джерело тепла для вироблення електроенергії традиційними способами (наприклад, за допомогою турбогенераторів) або ж безпосередньо перетворювати сонячну енергію в електричний струм в сонячних елементах. Сонячну енергію використовують також після її концентрації за допомогою дзеркал - для плавлення речовин, дистиляції води, нагріву, опалювання і т.д.
Оскільки енергія сонячного випромінювання розподілена за великою площею (іншими словами, має низьку щільність), будь-яка установка для прямого використання сонячної енергії повинна мати збираючий пристрій (колектор) з достатньою поверхнею.
Простий пристрій такого роду - це колектор, чорна плита, добре ізольована знизу. Вона прикрита склом або пластмасою, яка пропускає світло, але не пропускає інфрачервоне теплове випромінювання. У просторі між плитою і склом найчастіше розміщують чорні трубки, через які течуть вода, масло, ртуть, повітря, сірчистий ангідрид і т.п. Сонячне випромінювання, проникаючи через скло або пластмасу в колектор, поглинається чорними трубками і плитою і нагріває робочу речовину в трубках. Теплове випромінювання не може вийти з колектора, тому температура в нім значно вища (па 200-500°С), ніж температура навколишнього повітря. У цьому виявляється так званий парниковий ефект. Звичайні садові парники, по суті справи, є простими колекторами сонячного випромінювання. Але чим далі від тропіків, тим менш ефективний горизонтальний колектор, а повертати його услід за Сонцем дуже важко і дорого. Тому такі колектори, як правило, встановлюють під певним оптимальним кутом на південь.
Складнішим і дорожчим колектором є увігнуте дзеркало, яке зосереджує падаюче випромінювання в малому об'ємі біля певної геометричної крапки - фокусу. Відзеркалювальна поверхня дзеркала виконана з металізованої пластмаси або складена з багатьох малих плоских дзеркал, прикріплених до великої параболічної підстави. Завдяки спеціальним механізмам колектори такого типу постійно повернені до Сонця, це дозволяє збирати можливо більшу кількість сонячного випромінювання. Температура в робочому просторі дзеркальних колекторів досягає 3000°С і вище.
Сонячна енергетика відноситься до найбільш матеріаломістких видів виробництва енергії.
На думку фахівців, найпривабливішою ідеєю щодо перетворення сонячної енергії є використання фотоелектричного ефекту в напівпровідниках.
Але, для прикладу, електростанція на сонячних батареях поблизу екватора з добовим виробленням 500 МВт·ч (приблизно стільки енергії виробляє досить велика ГЕС). Ясно, що таке величезна кількість сонячних напівпровідникових елементів може. окупитися тільки тоді, коли їх виробництво буде дійсне дешево. Ефективність сонячних електростанцій в інших зонах Землі була б мала із-за нестійких атмосферних умов, щодо слабкої інтенсивності сонячної радіації, яку тут навіть в сонячні дні сильніше поглинає атмосфера, а також коливань, обумовлених чергуванням дня і ночі.
Проте сонячні фотоелементи вже сьогодні знаходять своє специфічне застосування. Вони виявилися практично незамінними джерелами електричного струму в ракетах, супутниках і автоматичних міжпланетних станціях, а на Землі - в першу чергу для живлення телефонних мереж в не електрифікованих районах або ж для малих споживачів струму (радіоапаратура, електричні бритви і запальнички і т.п.).
Вітрова енергія.
Ми живемо на дні повітряного океану, в світі вітрів. Люди давно це зрозуміли, вони постійно відчували на собі дію вітру, хоча довгий час не могли пояснити багато явищ.
Величезна енергія рухомих повітряних мас. Запаси енергії вітру більш ніж в сто разів перевищують запаси гідроенергії всіх річок планети. Постійно і всюди на землі дмуть вітри - від легкого вітерцю, що несе бажану прохолоду в літню спеку, до могутніх ураганів, що приносять незліченну утрату і руйнування. Завжди неспокійний повітряний океан, на дні якого ми живемо. Вітри, що дмуть на просторах наший країни, могли б легко задовольнити всі її потреби в електроенергії! Чому ж такий рясний, доступний та і екологічно чисте джерело енергії так слабо використовується? В наші дні двигуни, що використовують вітер, покривають всього одну тисячну світових потреб в енергії.
Середньорічна швидкість вітру на висоті 20-30 м над поверхнею Землі повинна бути чималою, щоб потужність повітряного потоку, що проходить через належним чином орієнтований вертикальний перетин, досягала значення, прийнятного для перетворення. Вітроенергетична установка, розташована на майданчику, де середньорічна питома потужність повітряного потоку складає близько 500 Вт/м2 (швидкість повітряного потоку при цьому рівна 7 м/с), може перетворити в електроенергію близько 175 з цих 500 Вт/м2.
Енергія, що міститься в потоці рухомого повітря, пропорційна кубу швидкості вітру. Проте не вся енергія повітряного потоку може бути використана навіть за допомогою ідеального пристрою. Теоретично коефіцієнт корисного використання енергії повітряного потоку може бути рівний 59,3 %. На практиці, згідно з опублікованими даними, максимальний коефіцієнт корисного використання енергії вітру рівний приблизно 50 %, проте і цей показник досягається не при всіх швидкостях, а тільки при оптимальній швидкості, передбаченій проектом. Крім того, частина енергії повітряного потоку втрачається при перетворенні механічної енергії в електричну, яке здійснюється з ККД зазвичай 75-95 %. Враховуючи всі ці чинники, питома електрична потужність складає 30-40 % потужності повітряного потоку. Проте іноді вітер має швидкість, що виходить за межі розрахункових швидкостей.
Широкому застосуванню агрегатів для перетворення вітру в енергію в звичайних умовах поки перешкоджає їх висока собівартість. Навряд чи потрібно говорити, що за вітер платити не потрібно, проте машини, потрібні для того, щоб запрягти його в роботу, обходяться дуже дорого
Енергія річок.
Багато тисячоліть вірно служить людині енергія води. Запаси її на Землі колосальні. Недаремно деякі учені вважають, що нашу планету правильніше було б називати не Земля, а Вода - адже близько трьох чвертей поверхні планети покрито водою. Величезним акумулятором енергії служить Світовий океан, що поглинає велику її частину, що поступає від Сонця. Тут відбуваються приливи і відливи, виникають могутні океанські течії. Народжуються могутні річки, що несуть величезні маси води в моря і океани. Зрозуміло, що людство у пошуках енергії не могло пройти мимо таких гігантських її запасів. Раніше всього люди навчилися використовувати енергію річок.
Вода була першим джерелом енергії, і, ймовірно, першою машиною, в якій людина використовувала енергію води, була примітивна водяна турбіна. Понад 2000 років тому горці на Ближньому Сході вже користувалися водяним колесом у вигляді валу з лопатками. Суть пристрою зводилася до наступного. Потік води, відведений із струмка або річки, тисне на лопатки, передаючи їм свою кінетичну енергію. Лопатки приходять в рух, а оскільки вони жорстко скріпляють з валом, вал обертається. З ним у свою чергу скріпляє млинове жорно, яке разом з валом обертається по відношенню до нерухомого нижнього жорна. Саме так працювали перші “механізовані” млини для зерна. Але їх споруджували тільки в гірських районах, де є річки і струмки з великим перепадом і сильним натиском. На поволі поточних потоках водяні колеса з горизонтально розміщеними лопатками малоефективні.
У сучасній гідроелектростанції маса води з великою швидкістю спрямовується на лопатки турбін. Вода із-за дамби тече - через захисну сітку і регульований затвор - по сталевому трубопроводу до турбіни, над якою встановлений генератор. Механічна енергія води за допомогою турбіни передається генераторам і в них перетвориться в електричну. Після здійснення роботи вода стікає в річку через тунель, що поступово розширюється, втрачаючи при цьому свою швидкість.
Гідроелектростанції класифікуються по потужності на дрібних (зі встановленою електричною потужністю до 0,2 Мвт), малих (до 2 Мвт), середніх (до 20 Мвт) і великих (понад 20 Мвт). Другий критерій, по якому розділяються гідроелектростанції, - натиск. Розрізняють низьконапірні (натиск до 10 м), середнього натиску (до 100 м) і високонапірні (понад 100 м). У окремих випадках дамби високонапірних ГЕС досягають висоти 240 м. Такі дамби зосереджують перед турбінами водну енергію, накопичуючи воду і піднімаючи її рівень.
Поряд з використанням енергії сонця і вітру все більшого поширення набуває біонафта, різні тверді органічні матеріали та біогаз, які є продукцією сільськогосподарського виробництва. Аграрне виробництво із споживача традиційних видів енергії перетворюється у виробника їх зі значним потенціалом у майбутньому. У розвитку біоенергетики сільської місцевості у світі можна виділити три основні тенденції:
скорочення загальних витрат енергії;
збільшення використання відновлюваних джерел енергії;
переважного застосування твердих видів біопалива.