И. Лакатос Доказательства и опровержения. Как доказываются теоремы
Вид материала | Задача |
Содержаниеб) Смягченное расширение понятий может превратить математическую истину в логическую Чьей рациональности? Я чувствую конвенционалистскую инфильтрацию. Бета |
- Правила и ошибки возможные при определении. Деление как логическая операция. Виды деления, 23.4kb.
- Тема 1 курс, 30.71kb.
- Содержание: Введение, 134.15kb.
- Программа вступительного экзамена в магистратуру математического факультета, 107.92kb.
- Брянский городской лицей №1 имени А. С. Пушкина Визитная карточка учебного проекта, 50.66kb.
- Программа для поступающих в аспирантуру по специальности 05. 13. 18 Математическое, 37.95kb.
- Трудно найти человека, у которого имя Пифагора не ассоциировалось бы с теоремой Пифагора, 42.5kb.
- Применима ли теорема Пифагора к сферическому треугольнику?, 116.8kb.
- Математические утверждения и теоремы, их виды, работа с теоремами. Обоснования и доказательства., 63.84kb.
- Вопросы философии, 2006, №6 Парадигмы, исследовательские программы и ядро раздела науки, 437.91kb.
б) Смягченное расширение понятий может превратить математическую истину в логическую
Тета. Я думаю, что Гамма прав относительно необходимости проведения раздельной линии между рациональным и иррациональным расширением понятий. Действительно, расширение понятий зашло слишком далеко и из скромной рациональной деятельности превратилось в радикальную и иррациональную.
Первоначально критика сосредоточивалась исключительно на небольшом расширении одного частного понятия. Оно должно было быть небольшим, чтобы мы не могли его заметить; если бы его действительная — расширяющая — природа была увидена, то оно могло не быть принятым как законная критика. Оно сосредоточивается на одном частном понятии, как в случае наших несофистических универсальных предложений «Все А суть В». В таком случае критик хочет найти слегка расширенное А (в нашем случае многогранник), которое не будет В (в нашем случае эйлеров).
Но Каппа заострил это в двух направлениях. Во-первых, чтобы подвергнуть расширяющей понятие критике более чем одну составную часть предложения, находящегося под ударом. Во-вторых, превратить расширение понятий из тайной и даже скромной деятельности в открытое деформирование понятия вроде превращения «все» в «не». Здесь в качестве опровержения принимается любой имеющий смысл перевод терминов атакуемого предложения, который делает теорему ложной. Тогда я сказал бы, что если предложение не может быть опровергнуто в отношении своих составных частей: а, b,.., то оно будет логически истинным для этих составных частей178. Такое предложение представляет конечный результат длинного критико-спекулятивного процесса, в течение которого смысловой груз некоторых терминов полностью перенесен на остальные термины и на форму теоремы.
Теперь все, что говорит Каппа, сводится к тому, что не существует предложений, логически истинных для всех их составных частей. Но могут быть предложения, логически истинные по отношению к некоторым составным частям, так что поток опровержений может быть открытым снова, если будут добавлены новые составные части, могущие быть расширенными. Если мы доведем дело до конца, то кончим иррационализмом,— но мы в этом не нуждаемся. Теперь, где же должны мы провести граничную линию? Мы можем допустить расширение понятий только для особо выделенной подгруппы составных частей, которые станут первыми мишенями для критики. Логическая истинность не будет зависеть от их значения.
Сигма. Таким образом, в конце концов мы приняли пункты Каппы: мы сделали истину не зависящей от значения по крайней мере некоторых из терминов!
Тета. Это верно. Но если мы хотим разбить скептицизм Каппы и избегнуть его порочных бесконечностей, то мы непременно должны остановить расширение понятий в той точке, где оно перестает быть орудием роста и становится орудием разрушения: может быть, нам придется определить, какими будут термины, значение которых может быть расширено только за счет уничтожения основных принципов рациональности179.
Каппа. Можем ли мы расширять понятия в вашей теории критической рациональности? Или будет ли это очевидно истинным, формулированным в не допускающих расширения точных терминах, которые не нуждаются в определении? Не кончится ли ваша теория критицизма «обращением к суду»? Можно ли критиковать все, кроме вашей теории критицизма, вашей «метатеории»180 ?
Омега (к Эпсилону). Мне нравится этот отход от истины к рациональности. Чьей рациональности? Я чувствую конвенционалистскую инфильтрацию.
Бета. О чем вы говорите? Я понимаю «мягкий образец» Теты расширения понятий. Я также понимаю, что расширение понятий может атаковать более чем один термин: мы видели это, когда Каппа расширял «расширение» или когда Гамма расширял «все»...
Сигма. Но Гамма, конечно, расширял «односвязные»!
Бета. Ну нет. «Односвязные» — это сокращение — он расширил только термин «все», который попался среди определяющих слов181 .
Тета. Вернемся к делу. Вы чувствуете себя несчастными из-за «открытого» радикального расширения понятий?
Бета. Да. Никто не захочет принять эту последнюю выпущенную марку за настоящее опровержение! Я хорошо вижу, что мягкая расширяющая понятия тенденция эвристического критицизма, раскрытая Пи, представляет наиболее важный двигатель математического роста. Но математики никогда не примут эту последнюю дикорастущую форму опровержения!
Учитель. Вы неправы, Бета. Они приняли ее и их принятие было поворотным пунктом в истории математики. Эта революция в математическом критицизме изменила понятие о математической истине, изменила стандарты математического доказательства, изменила характер математического роста182. Но теперь закроем на данный момент нашу дискуссию; об этой новой стадии мы поговорим в другое время.
Сигма. Но ведь ничего не установлено. Мы не можем остановиться теперь.
Учитель. Сочувствую вам. Эта последняя стадия даст важные источники пищи для нашей дискуссии183. Но научное исследование «начинается и кончается проблемами»184. (Покидает классную комнату).
Бета. Но вначале у меня не было проблем! А теперь у меня нет ничего, кроме проблем!