Клинико-патогенетические аспекты формирования церебральных нарушений при сахарном диабете 1 типа у детей и подростков 14. 00. 09 педиатрия

Вид материалаАвтореферат

Содержание


Показатели событий сна по данным полисомнографического исследования (ПСИ) в анализируемых группах пациентов с СД
Рис.7. Частота основных вариантов допплерографических изменений (ТДГ) в группах пациентов с различной выраженностью церебральных
Показатели средней скорости кровотока и индекса резистентности в артериях мозга в анализируемых группах пациентов с СД (медианы,
Показатели коротколатентных слуховых вызванных потенциалов (КСВП) в анализируемых группах пациентов с СД (медианы, квартили)
Рис.8. Содержание белка S-100В в сыворотке крови пациентов с СД с учетом наличия и выраженности церебральных нарушений при разли
Подобный материал:
1   2   3   4   5
Рис. 6. Частота структурных изменений ночного сна у пациентов с СД 1 типа в анализируемых группах

Таблица 1


Показатели

ПСИ

Группы

пациентов

Бодрствование внутри сна (мин)

Движения (мин)

Количество эпизодов храпа

Количество апноэ /

гипопноэ

Индекс

десатурации

(эпиз./час)

1 группа (n=8)

37

(24,0;48,0)

17,5

(8,5;26,5)

165,0

(85,5;276,5)

27,5

(20,0;66,5)

0,8

(0,3; 1,8)

2 группа (n=13)

42,0

(18,5;59,0)

22,0

(10,5;34,5)

390,0

(225,5;850,0)

39,0

(24,5;126,0)

1,5

(0,4; 2,0)

3 группа (n=11)

64,0

(48,0;72,0)

30,0

(24,5;54,0)

1190,0

(765,0;1950,0)

95,0

(54,5; 208,0)

4,2

(1,6; 5,0)

р1

0,5422

0,2245

0,0341

0,0397

0,0443

р2

0,0121

0,0381

0,0095

0,0116

0,0054

р3

0,0442

0,0438

0,0002

0,0228

0,0252
Показатели событий сна по данным полисомнографического исследования (ПСИ) в анализируемых группах пациентов с СД


Примечание: р – статистические различия между группами: р1 – 1-й и 2-й группой;

р2 – 1-й и 3-й группой; р3 – 2-й и 3-й группой


Однако у пациентов с субклиническими церебральными нарушениями (2-я группа) также определялось статистически значимое по сравнению c 1-й группой увеличение количества эпизодов храпа (р=0,0341), количества апноэ/гипопноэ (р=0,0397) и индекса десатурации (р=0,0443).

Таким образом, сахарный диабет влияет на структуру сна через ряд сложных механизмов, затрагивая деятельность различных нейрофизиологических и нейрохимических процессов, связанных с функциональным назначением отдельных стадий сна, а возрастание структурных нарушений и гипоксических событий в период ночного сна у пациентов по мере увеличения выраженности церебральных нарушений подтверждает наличие патогенетической взаимосвязи между дисфункцией систем ЦНС, регулирующих сон-бодрствование, и формированием диабетической энцефалопатии.

Исследование особенностей мозговой гемодинамики и паттерна коротколатентных слуховых вызванных потенциалов мозга было проведено у 88 детей и подростков с сахарным диабетом, из них 27 пациентов были с отсутствием клинико-неврологических проявлений и мнестических дисфункций (1-я группа), 33 человека – с наличием легких МД и/или нарушений внимания при отсутствии клинических ЦН (2-я группа) и 28 человек – с клиническими синдромами проявлений ЦН (3-я группа).

При проведении допплерографического исследования церебрального кровотока было установлено, что в общей группе пациентов с СД показатели средней скорости кровотока были снижены по сравнению с лицами без нарушений углеводного обмена в средней мозговой артерии (СМА) [72,0 (68,0;81,5) см/сек и 76,0(70,3;89,9) см/сек, р=0,0815] и задней мозговой артерии (ЗМА) [41,5 (39,3;44,0) см/сек и 50,0 (45,0; 54,8) см/сек, р=0,0454]. Индексы резистентности в общей группе больных СД по сравнению с контролем были значимо повышены в СМА [0,58 (0,54;0,61 и 0,52 (0,48;0,55), р=0,0221] и ЗМА [0,56 (0,54;0,59) и 0,54 (0,52;0,57), р=0,0736], тогда как в передней мозговой (ПМА) и базилярной артерии (БА) они достоверно не отличались от контрольных значений. Таким образом, мозговая гемодинамика у пациентов с СД характеризовалась различной степенью снижения кровенаполнения и повышением индекса резистентности артериального русла.

С учетом наличия изменений венозного оттока было выявлено преимущественно 3 типа ангиодистонических изменений:

1-й тип изменений церебрального кровотока по данным транскраниальной допплерографии (ТДГ1), отмечавшийся у 22,7% пациентов, характеризовался начальными проявлениями венозной дисгемии, определявшейся ретроградным кровотоком по глазничным венам, иногда несколько ускоренным (до 6-8 см/сек), усилением оттока по внутренним яремным и позвоночным венам, то есть экстракраниальным компенсированным типом церебральной венозной дисгемии;

2-й тип изменений церебрального кровотока (ТДГ2), выявлявшийся у 32,9% больных, расценивался как церебральная венозная дисгемия по интракраниальному типу 2-й степени, определявшейся гиперкинетическим кровотоком в базальных венах, прямом синусе, в ряде случаев, сочетающегося с ретроградным кровотоком по глазничным венам;

3-й тип изменений церебрального кровотока (ТДГ 3), отмечавшийся у 32,9% пациентов с СД, был представлен гипертонически-гипокинетическим вариантом кровотока в артериях основания головного мозга, характеризовавшимся снижением конечной диастолической и средней линейной скорости кровотока при повышении индекса резистентности в сочетании с признаками церебральной венозной дисгемии 1-й – 2-й степени (ускоренный кровоток по прямому синусу, ретроградный кровоток по верхнеглазничным венам).

Было установлено (рис. 7), что варианты 3-го типа церебрального кровотока встречались только среди больных 2-й (р1-2=0,0029) и 3-й группы (р1-3=0,00001), отмечаясь среди последних в 2,6 раза чаще, чем во второй группе (р2-3=0,0368). У пациентов 1-й группы нормальные варианты церебрального кровотока встречались в 2 раза чаще, чем у пациентов 2-й группы (р=0,0361) и в 9 раз чаще, чем у пациентов 3-й группы (р=0,00001). При этом у последних норма ТДГ определялась в 4,7 раза реже, чем у больных СД с субклиническими церебральными изменениями (р=0,0095).

В нашем исследовании выявлены существенные различия в частоте распределения различных вариантов допплерографических изменений церебрального кровотока в зависимости от степени нарушений микроциркуляции на глазном дне: наиболее неблагоприятные варианты церебрального кровотока определялись чаще у лиц с наличием микроциркуляторных нарушений на глазном дне (58,3% и 17,5%, соответственно, р=0,0002). По данным нейровизуализационных исследований, патологические изменения в ретинальных артериях развиваются параллельно с изменениями в мелких церебральных сосудах (T.Y.ссылка скрытаV.I.Kwa et al., 2002, N.Patton et al., 2005) и характеризуются типичными для микроангиопатии ультраструктурными изменениями (S.A.Moore et al., 1985), сопровождаясь, в частности, повреждением области базальных ганглиев (S.C.Ferguson et al., 2003), которые являются частью системы, обеспечивающей селективность психических процессов (Ю.Д.Кропотов, 2005).

При анализе допплерометрических характеристик церебрального кровотока с учетом наличия мозговых дисфункций (табл.2) выявлено статистически значимое снижение средней скорости кровотока у пациентов 3-й группы в ПМА и ЗМА по сравнению с 1-й группой (р=0,0382 и р=0,0445, соответственно), а также достоверное повышение индекса резистентности по сравнению с 1-й группой передней мозговой (р=0,0232) и основной артерии (р=0,0326).


Рис.7. Частота основных вариантов допплерографических изменений (ТДГ) в группах пациентов с различной выраженностью церебральных нарушений

Установлено статистически значимое снижение средней скорости кровотока у пациентов 2-й группы по сравнению с 1-й группой в ПМА (р=0,0453) и БА (р=0,0431). Тенденции к снижению скорости кровотока и повышению индекса резистентности у пациентов 1-й группы по сравнению со здоровыми лицами были наиболее выражены в ПМА и ЗМА, не достигая, однако, статистически значимых различий (р>0,05).

Таким образом, выявленные в нашем исследовании наиболее значимые изменения церебральной гемодинамики у больных диабетом были представлены в ПМА и ЗМА. Сосудистый бассейн ПМА обеспечивает кровоснабжение медиальных отделов лобных и части теменных долей мозга, передних и средних отделов мозолистого тела, передних отделов подкорковых образований и гипоталамуса. Глубокие ветви ЗМА питают крышу среднего мозга, гиппокамп, таламус, большую часть гипоталамуса. Поэтому при стенозе в бассейне ПМА и ЗМА формируется комплекс нейропсихологических симптомов, включающий в себя патологические феномены, происхождение которых обусловлено дефицитом кровоснабжения мозговых зон, объединенных данными сосудистыми бассейнами. Центральное место в клинической нейропсихологической картине такой недостаточности занимают нарушения памяти, которые по своей структуре соответствуют описанным выше мнестическим расстройствам, связанным с поражением диэнцефально-гипоталамической области.

Таблица 2

Показатели средней скорости кровотока и индекса резистентности в артериях мозга в анализируемых группах пациентов с СД (медианы, квартили)



Показатели

кровотока


Группы

пациентов

ПМА

СМА


ЗМА


БА

Vm (см/сек)

IR


Vm (см/сек)

IR


Vm (см/сек)

IR


Vm (см/сек)

IR


1 группа

(n=27)


56,2

0,56

74,5

0,56

42,5

0,54

45,0

0,51

54

0,55

72,5

0,54

39

0,52

39,5

0,52

62,5

0,59

83

0,57

45,5

0,56

49

0,56

2 группа

(n=33)

53,0

0,56

72,0

0,56

40,0

0,54

42,5

0,53

52

0,56

70,0

0,55

37

0,52

40,5

0,50

59,5

0,59

80,0

0,58

42,5

0,58

44

0,54

3 группа

(n=28)

47,5

0,60

68,0

0,60

35,7

0,57

40,0

0,55

44

0,58

64,5

0,56

34

0,55

37,5

0,53

52,5

0,62

73,0

0,62

39,5

0,59

45

0,58

р1

0,0453

0,1715

0,6421

0,2866

0,0832

0,6514

0,0431

0,0696

р2

0,0382

0,0232

0,0856

0,1239

0,0445

0,0519

0,0287

0,0326

р3

0,6002

0,0345

0,1205

0,2287

0,0638

0,2148

0,6722

0,0415
Примечание: р – статистические различия между группами: р1–1-й и 2-й; р2 –1-й и 3-й; р3–2-й и 3-й.

Ухудшение показателей кровотока в магистральных сосудах мозга, выявленное у пациентов с сахарным диабетом, может быть обусловлено несколькими возможными патофизиологическими причинами: развитием микроангиопатии сосудов, питающих стенку крупных сосудов (vasa vasorum); нарушениями механизмов центральной регуляции церебральной гемодинамики (G.Rodriguez et al., 1993), в том числе, из-за поражения автономных центров ствола мозга; формированием диабетической полинейропатии вегетативных волокон nervi vasorum (автономной нейропатии) крупных церебральных сосудов (Т.Е.Чернышова и соавт., 2005); развитием атеросклеротического процесса церебральных сосудов крупного и среднего калибра (A.Chan et al., 1983); нарушением гемодинамики в результате колебания уровня гликемии (R.B.Duckrow, 1990, M.Wakisaka et al., 1990); поражением церебральных венозных сосудов, приводящих к нарушениям венозного оттока по позвоночным сплетениям и регионарными изменениями тонуса внутричерепных вен. Не исключено, что развитие диабетической микроангиопатии ведет к нарушению мозгового кровотока не только через расстройства миогенной и метаболической регуляции, но также и через нарушения нейрогенной и нейрогуморальной регуляции тонуса крупных мозговых сосудов (O.B.Paulson et al., 1990).

При изучении паттерна коротколатентных слуховых вызванных потенциалов мозга (КСВП) было установлено, что у пациентов с СД определялось удлинение времени латентных периодов пиков КСВП по сравнению с нормой, достоверное по времени ответа при контрлатеральной стимуляции для IV [5,01(4,77;5,12) мс 4,79 (4,68;5,02) мс, р=0,0071], V [5,73 (5,51;5,92) мс и 5,55 (5,41; 5,66) мс, р=0,0422] и VI пика [6,83 (6,47;7,13) мс и 6,43 (6,21; 7,01) мс, р=0,0015].

Изучение характеристик КСВП с учетом наличия и выраженности проявлений церебральных дисфункций (табл. 3), позволило выявить достоверное по сравнению с пациентами без ЦН удлинение латентного периода ответа V пика у пациентов 3-й группы (р=0,0341) и длительностей интервалов III-V (р=0,0482) и I-V (р=0,0311), а также снижение соотношений амплитуд V/I (р=0,0318). В группе больных с субклиническими ЦН отмечалось статистически значимое по сравнению с пациентами без ЦН удлинение латентного периода ответа V пика (р=0,0455) и снижение соотношений амплитуд V/I (р=0,0478). Показатели КСВП у пациентов 1-й группы достоверно не отличались от контрольных значений за исключением длительности латентного периода ответа IV и VI пика (р=0,0423 и р=0,0432). Таким образом, установлено замедление проведения слухового импульса у больных с СД, имеющих субклинические признаки церебральных нарушений в виде мнестических дисфункций и/или нарушений функции внимания, что позволяет применять данный метод для объективизации доклинических изменений в ЦНС.

Проведенный корреляционный анализ между параметрами КСВП и допплерографическими характеристиками мозгового кровотока позволил установить наличие достоверных положительных корреляций между индексом резистентности ПМА и длительностью латентного периода ответа IV и V пика (R=0,707, р=0,016, R=0,721,р=0,018, соответственно), а также длительностью интервала III-V (R=0,775, р=0,004). Определялись также положительные корреляции индекса резистентности СМА с длительностью латенций V пика КСВП (R=0,601, р=0,041) и амплитудным соотношением V/I (R=0,805, р=0,002). Выявлены положительные корреляции индекса резистентности ЗМА с длительностью межпиковых интервалов III-V (R=0,663, р=0,027) и I-V (R=0,621, р=0,042) КСВП. В основной артерии ИР прямо коррелировал с длительностью интервалов III-V (R=0,625, р=0,036) и I-V КСВП (R=0,605, р=0,049).

Эти данные указывали на прогрессирование нарушений проведения импульса между стволовыми и мезэнцефальными структурами по мере ухудшения показателей церебрального кровотока.

Таблица 3

Показатели коротколатентных слуховых вызванных потенциалов (КСВП) в анализируемых группах пациентов с СД (медианы, квартили)


Параметры КСВП


Группы

пациентов

Длительность латентных периодов

пиков КСВП (мс)

Длительность

межпиковых

интервалов (мс)

I

II

III

IV

V

VI

VII

I-III

III-V

I-V


1 группа

(n=27)


1,73

2,74

3,75

5,07

5,60

6,90

8,0

1,99

1,94

3,94

1,60

2,57

3,56

4,89

5,55

6,65

7,57

1,875

1,835

3,74

1,76

2,78

3,84

5,12

5,81

7,15

8,19

2,105

2,05

4,24

2 группа

(n=33)


1,68

2,72

3,7

4,98

5,74

6,88

8,14

2,14

1,98

4,11

1,45

2,57

3,54

4,74

5,68

6,75

7,58

2,00

1,79

3,89

1,72

2,87

3,81

5,08

5,92

7,24

8,53

2,21

2,12

4,25

3 группа

(n=28)


1,72

2,52

3,68

4,98

5,94

6,90

7,61

2,20

2,08

4,32

1,46

3,54

4,9

5,72

6,46

7,53

0,07

2,00

2,02

4,10

1,78

3,96

5,34

6,04

6,96

8,12

0,13

2,41

2,18

4,32

р1

0,6847

0,2381

0,2365

0,2341

0,0455

0,5003

0,5038

0,2837

0,3876

0,2983

р2

0,3483

0,7834

0,4276

0,1267

0,0341

0,9032

0,3484

0,1350

0,0482

0,0311

р3

0,5623

0,5932

0,5028

0,0823

0,2958

0,4093

0,6734

0,1250

0,0934

0,0722
Примечание: р – статистические различия между группами: р1 – 1-й и 2-й группой;р2 – 1-й и 3-й группой; р3 – 2-й и 3-й группой.


С целью изучения патогенетической роли нейропептидов в формировании поражения ЦНС при сахарном диабете 1-го типа у 88 детей и подростков с СД, прошедших клинико-неврологическое, нейропсихологическое, допплерографическое и электрофизиологическое обследование, было изучено содержание следующих мозгоспецифических пептидов в сыворотке крови: белка S-100В, нейроспецифической енолазы (НСЕ), мозгового нейротрофического фактора (МНТФ), орексина А. Контрольную группу составили 20 здоровых детей и подростков.

Был проведен анализ уровней изучаемых нейропептидов при различной длительности болезни с учетом наличия церебральных изменений. У пациентов 3-й группы (с клинически выраженными церебральными нарушениями) содержание S-100В в крови (рис.8) было достоверно выше на всех стадиях болезни (длительность СД менее 3 лет, от 3 до 6 лет и более 6 лет) как по сравнению с контролем (р=0,0002, р=0,0311, р=0,0005, соответственно), так и по сравнению с группой больных без церебральных нарушений (р=0,0252, р=0,0429, р=0,0106). У пациентов 2-й группы (с субклиническими церебральными дисфункциями) уровень S-100В в крови был также выше по сравнению с 1-й группой на всех этапах СД, достигая достоверности различий при длительности СД более 6 лет (р=0,0327). Медиана концентрации белка S-100В в крови в 1-й группе была повышена в 1,7 раза по сравнению с лицами без нарушений углеводного обмена и референтными его значениями при длительности СД до 3 лет и более 6 лет (р=0,0351 и р=0,0124, соответственно).

Астроциты и микроглия могут играть двоякую роль в отношении нейронов, как защищая их от повреждения через активацию нейротрофических факторов, так и индуцируя их дегенерацию через образование токсичных молекул (C.Reali et al., 2005). S-100В может оказывать токсический (дозозависимый) эффект на культуру астроцитов, опосредуемый через активацию индуцибельной NO-синтазы посредством активизации транскрипции фактора NFkappaB (A.G.Lam et al., 2001) и стресс-активированных киназ p38 и JNK. (G. Esposito et al., 2005), вызывая увеличение интенсивности и числа клеток, подвергающихся апоптозу (J.Hu, L.J.Van Eldik, 1996). Повышение уровня S-100B в крови у больных СД можно рассматривать как результат развития реактивного глиоза и повышенной проницаемости ГЭБ, вызванных гипергликемией и церебральной гипоксией.

Выявленная определенная динамика интенсивности данного процесса на различных этапах эволюции сахарного диабета может объясняться выраженной реакцией глиальных структур в дебюте СД, прежде всего в определенных зонах лимбико-ретикулярного комплекса, на метаболический аффект, вызванный манифестацией заболевания, последующей адаптацией к нему со снижением этой интенсивности этой реакции, и усилением активации астроцитоза при длительном течении болезни в связи с развитием микроциркуляторных осложнений СД.


S-100В (нг/л)


Рис.8. Содержание белка S-100В в сыворотке крови пациентов с СД с учетом наличия и выраженности церебральных нарушений при различной длительности заболевания

Клиническое проспективное наблюдение за детьми с отсутствием клинических и нейропсихологических признаков церебральных расстройств показало, что манифестация церебральных дисфункций у пациентов с исходным уровнем S-100В более 140 нг/л происходила в 3 раза чаще, чем у больных с уровнем S-100В менее 140 нг/л (р=0,018). Эти результаты позволили предложить уровень S-100В 140 нг/л в крови в качестве критерия группы риска по формированию церебральных нарушений при сахарном диабете 1 типа у детей и подростков.

Определялась достоверная отрицательная корреляция уровня S-100В со средней скоростью кровотока в задней мозговой артерии (R=-0,4279, р=0,0395). Проведение корреляционного анализа концентрации данного нейропептида в крови с основными характеристиками КСВП позволило выявить наличие достоверной прямой корреляционной зависимости между уровнем белка S-100В в крови и длительностью латентного периода ответа V и VI пика при контралатеральной стимуляции, а также длительностью интервала I-V КСВП (R=0,3310, р=0,0498; R=0,4262, р=0,0133; R=0,4959, р=0,0033, соответственно). Это свидетельствовало о роли процессов реактивного астроцитоза в формировании нейрофизиологических нарушений в срединных структурах мозга.

Таким образом, повышение уровня белка S-100В связано, преимущественно, с дисциркуляторными нарушениями в зоне структур ЛРК, что подтверждает с высокой степенью вероятности преимущественную активацию реактивного глиоза при сахарном диабете именно в этой области мозга.

Выявленная достоверная отрицательная корреляция уровня S-100В в сыворотке крови с показателями средних уровней сатурации в фазах медленного и быстрого сна, а также с минимальным уровнем сатурации (R=-0,6767, р=0,0398, R=-0,6377, р=0,0430, R=-0,8986, р=0,0143) указывала на взаимосвязь между нарастанием гипоксии в период сна и увеличением содержания данного нейропептида в крови. Объяснений этому факту может быть предложено несколько: во-первых, оба данных процесса являются следствием хронической тканевой гипоксии, присущей сахарному диабету, приводящей как к реактивному глиозу и повышению уровня S-100В в крови, так и к снижению падения уровня кислорода в крови при оксиметрии; во-вторых, повышение гипоксических событий периода сна вследствие нарушения центральной регуляции акта дыхания является одним из симптомов дисциркуляторной энцефалопатии, поэтому их выраженность и частота, так же как и уровень S-100В в крови увеличивается по мере нарастания ее тяжести; в-третьих, возрастание экспрессии S-100В может быть не только следствием, но и причиной патогенного воздействия на структуры мозга (F.Malchiodi-Albedi, et al., 2001), что, не исключено, оказывает нейротоксическое воздействие, в том числе, на центры регуляции дыхания.

Наличие отрицательной корреляции между уровнем S-100В и возрастом при манифестации СД (R=-0,4067, р=0,0042) указывало на более значительное повреждение глиальных структур мозга у лиц, заболевших СД в раннем возрасте. Гипоксические факторы (гипер-, гипогликемии), воздействующие на мозг ребенка, при прочих равных условиях нарушают его созревание тем больше, чем более незрелы его структуры. И поскольку важную роль в процессах дифференцировки нервных клеток и становлении когнитивных функций играет инсулин (W.Kern et al., 2001), то при его дефиците будут страдать более интенсивно развивающиеся участки ЦНС (т.е. чем меньше возраст ребенка).

П
НСЕ (мкг/мл)
овышение уровня НСЕ у пациентов 3-й группы (рис.9), как и белка S-100В было достоверно выше по сравнению с контролем на всех этапах (длительность СД менее 3 лет, от 3 до 6 лет и более 6 лет) заболевания (р=0,0002, р=0,0004, р=0,0001, соответственно) и по сравнению с пациентами без церебральных нарушений при длительности СД до 3 лет (р=0,0323). У больных 2-й группы повышение уровня НСЕ также носило достоверный характер по сравнению с контролем при всех сроках длительности диабета (р=0,0058, р=0,0063, р=0,0036, соответственно) и по сравнению с пациентами с СД 1-й группы при небольшом стаже болезни (р=0,0452). У пациентов 1-й группы уровень НСЕ был также повышен по сравнению с контролем на всех этапах СД (р=0,0321, р=0,0058, р=0,0033).

Рис.9. Содержание нейроспецифической енолазы в сыворотке крови пациентов с СД с учетом наличия и выраженности церебральных нарушений при различной длительности заболевания

Высокий уровень НСЕ у пациентов с клинико-неврологическими проявлениями церебральных дисфункций свидетельствует о более выраженном гипоксическом повреждении ЦНС у них по сравнению с лицами без ЦН, поскольку более тяжелое поражение ЦНС сопряжено с повышением уровня НСЕ в крови (P. Marangos, D. Schmechel, 1987; T. Wallimann et al., 1992).

Выявленные положительные корреляции уровня НСЕ в сыворотке с длительностью латенции VI пика (R=0,6500, р=0,0420), интервала III–V (R=0,6142, р=0,0468) и I-V КСВП (R=0,6857, р=0,0284) позволили констатировать, что изменения параметров КСВП крови у пациентов с СД, свидетельствующие о нарушениях в мезэнцефальной области, пропорциональны степени нейрональной гипоксии, оцениваемой по концентрации НСЕ. Подобная связь между центральными нейрофизиологическими нарушениями и повышенным уровнем НСЕ показана при билирубиновой энцефалопатии (I.Akman, et al., 2004).

В общей группе больных СД наблюдалось реактивное повышение экспрессии мозгового нейротрофического фактора (рис.10) по сравнению со здоровыми лицами, вызванное, очевидно, активизацией процессов нейротрофической защиты в условиях нарушения энергетического обеспечения вследствие хронической гипергликемии и колебания уровня глюкозы в крови. Данный процесс можно рассматривать как защитно-приспособительный, так как повышение МНТФ улучшает ГАМК-ергическую и глицинергическую передачу в нейронах (M.A. Carrasco et al., 2007), приводит к активизации перестройки цитоскелета и длительной пот
МНТФ (пг/мл)
енц иации, лежащей в основе формирования памяти. (G.Lynch et al., 2008).