Учебное пособие для студентов специальности 271200 «Технология продуктов общественного питания» всех форм обучения
Вид материала | Учебное пособие |
- Учебное пособие для студентов специальности 271200«Технология продуктов общественного, 1306.4kb.
- Учебное пособие для студентов всех форм обучения специальности 271200 «Технология продуктов, 1107.93kb.
- Учебное пособие для студентов специальности 271200 «Технология продуктов общественного, 2012.38kb.
- Учебное пособие для студентов специальности 271200 «Технология продуктов общественного, 1576.28kb.
- Учебное пособие для студентов специальности 271200 «Технология продуктов общественного, 831.54kb.
- Учебное пособие для студентов специальности 271200 «Технология продуктов общественного, 1600.21kb.
- Учебное пособие для студентов специальностей 271200 «Технология продуктов общественного, 1299.8kb.
- Учебное пособие для студентов, обучающихся по специальности 260502 «Технология продуктов, 2230kb.
- Учебное пособие часть 2 для студентов специальностей 271200 «Технология продуктов общественного, 3006.94kb.
- Учебное пособие для студентов специальности 271200 «Технология продуктов общественного, 969.43kb.
Тема 3. ИЗМЕНЕНИЯ ОСНОВНЫХ ПИЩЕВЫХ ВЕЩЕСТВ ПРОДУКТОВ В ПРОЦЕССЕ КУЛИНАРНОЙ ОБРАБОТКИ 3.1 Качество кулинарной продукции Под качеством кулинарной продукции понимают совокупность потребительских свойств, обуславливающих ее пригодность удовлетворять потребность людей в рациональном питании. Показатели качества кулинарной продукции это безвредность, высокие пищевые и товарные достоинства. Совокупность полезных свойств кулинарной продукции характеризуется пищевой ценностью, органолептическими показателями, усвояемостью, безопасностью. Пищевая ценность — это комплексное свойство, объединяющее энергетическую, биологическую, физиологическую ценность, а также усвояемость, безопасность. Энергетическая ценность характеризуется количеством энергии, высвобождающейся из пищевых веществ в процессе их биологического окисления. Биологическая ценность определяется в основном качеством белков пищи — перевариваемостью и степенью сбалансированности аминокислотного состава. Физиологическая ценность обусловлена наличием веществ, оказывающих активное воздействие на организм человека (сапонины свеклы, кофеин кофе и чая и т. д.). Органолептические показатели (внешний вид, консистенция, цвет, запах, вкус) характеризуют субъективное отношение человека к пище и определяются с помощью органов чувств. Термин «органолептический» происходит от греческих слов «organon» (орудие, инструмент, орган) и «leptikos» (склонный брать или принимать) и означает «выявляемый с помощью органов чувств». В зарубежной литературе преимущественно распространен термин «сенсорный» (от лат. «sensus» — чувство, ощущение). Наряду с физико-химическими, т. е. инструментальными, методами анализа большое значение имеет органолептическая оценка качества пищевых продуктов. Результаты органолептического анализа всегда являются решающими при определении качества новых продуктов, вне зависимости от их пищевой ценности. Органолептический контроль необходим также при ведении новых ускоренных технологических процессов получения традиционных продуктов питания. Органолептическая оценка — это оценка ответной реакции органов чувств человека на свойства пищевого продукта как исследуемого объекта, определяемая с помощью качественных и количественных методов. Качественная оценка выражается с помощью словесных описаний (дескрипторов), а количественная, характеризующая интенсивность ощущения, — в числах (шкалах) или графически. Вкус — ощущение, возникающее в результате взаимодействия вкусового стимула с рецепторами, отражающее свойства стимула и физиологические особенности индивида. Запах — ощущение, возникающее в результате взаимодействия обонятельного стимула с рецепторами, отражающее свойства стимула и физиологические особенности индивида. Текстура — макроструктура пищевого продукта, т. е. система взаимного расположения его структурных элементов, органолептически характеризуемая комплексом зрительных, слуховых и осязательных ощущений, возникающих при разжевывании продукта. Текстура описывается в терминах: волокнистая, слоистая, пористая, однородная, твердая, упругая, пластичная, жесткая, мягкая, нежная, липкая, клейкая, хрупкая, рассыпчатая, хрустящая и др. Флейвор — комплексное ощущение в полости рта, вызываемое вкусом, запахом и текстурой пищевого продукта. Вкусовая и обонятельная чувствительность называется химической, так как возбуждение соответствующих рецепторов происходит в результате «химического анализа» молекул, растворенных в слюне (вкус) или находящихся в воздухе (запах). Традиционно различают четыре типа вкусовых ощущений: сладкое, кислое, соленое и горькое. Усвояемость — степень использования компонентов пищи организмом человека. Безопасность — это отсутствие недопустимого риска, связанного с возможностью нанесения ущерба здоровью (жизни) человека. При превышении допустимого уровня показателей безопасности кулинарная продукция переводится в категорию опасной. Опасная продукция подлежит уничтожению. Различают следующие виды безопасности кулинарной продукции: химическая, санитарно-гигиеническая, радиационная. Химическая безопасность — отсутствие недопустимого риска, который может быть нанесен токсичными веществами жизни, здоровью потребителей. Вещества, влияющие на химическую безопасность кулинарной продукции, подразделяются на следующие группы: токсичные элементы (соли тяжелых металлов); микотоксины, нитраты и нитриты, пестициды, антибиотики; гормональные препараты; запрещенные пищевые добавки и красители. Санитарно-гигиеническая безопасность — отсутствие недопустимого риска, который может возникнуть при микробиологических и биологических загрязнениях кулинарной продукции, вызываемых бактериями и грибами. При этом в продуктах накапливаются токсичные вещества (микотоксины при плесневении, токсины ботулинуса, сальмонеллы, стафилококка, кишечной палочки и др.), которые вызывают отравления разной степени тяжести. Радиационная безопасность — отсутствие недопустимого риска, который может быть нанесен жизни, здоровью потребителей радиоактивными веществами или их ионизирующими излучениями. Качество кулинарной продукции формируется в процессе всего технологического цикла производства. Основными этапами его являются:
Маркетинг — это предвидение, управление и удовлетворение спроса потребителей на кулинарную продукцию. Прогнозировать спрос можно, только постоянно изучая рынок, определяя потребности населения в продукции и ориентируя производство на эти потребности. В процессе маркетинговых исследований должен быть точно определен рыночный спрос, например, предприятие какого типа надо открыть, каким будет в нем ассортимент кулинарной продукции, примерные количества ее и т. д. В функции маркетинга входит и обратная связь с потребителями. Вся информация, относящаяся к качеству продукции, должна анализироваться и доводиться до сведения производителя. Проектирование и разработка продукции включают составление меню, разработку рецептур новых или фирменных блюд, подготовку нормативной (технико-технологических карт, технических условий — ТУ) и технологической (технологических карт, технологических инструкций) документации. Планирование и разработка технологического процесса. На основе разработанной нормативной и технологической документации составляются технологические схемы приготовления отдельных блюд, определяется последовательность операций, разрабатывается технологический процесс производства кулинарной продукции на предприятии в целом. Определяется потребность в сырье, оборудовании, инвентаре, посуде. Материально-техническое снабжение. Сырье, продукты, полуфабрикаты, используемые в технологическом процессе производства, становятся частью выпускаемой продукции, непосредственно влияют на качество и должны соответствовать гигиеническим требованиям к качеству и безопасности продовольственного сырья и пищевых продуктов (СанПиН 2.3.2-96). Оборудование, инвентарь, посуда также должны соответствовать санитарно-гигиеническим требованиям и иметь гигиенические сертификаты или сертификаты соответствия. Производство продукции складывается из трех стадий: 1. обработки сырья и приготовления полуфабрикатов (для предприятий, работающих на сырье); 2. приготовления блюд и кулинарных изделий; 3. подготовки блюд к реализации (порционирование, оформление). Все три стадии оказывают влияние на формирование качества готовой продукции и должны проводиться в соответствии с требованиями технологических нормативов и санитарных правил. Контроль качества — проверка соответствия показателей качества кулинарной продукции установленным требованиям, это один из важнейших этапов технологического цикла производства. Контроль качества условно подразделяют на три вида: предварительный (входной), операционный (производственный), выходной (приемочный). Предварительный — это контроль поступающего сырья и полуфабрикатов. Операционный контроль проводится по ходу технологического процесса: от принятых по качеству сырья и (или) полуфабрикатов до выпуска готовой продукции. Он включает проверку:
Выходной (приемочный) контроль — проверка качества готовой продукции. На предприятии проводят бракераж пищи, лабораторный контроль на полноту вложения сырья, безопасность и т. д. Качество кулинарной продукции, ее безопасность контролируют по органолептическим, физико-химическим и микробиологическим показателям. Изготовитель обязан обеспечивать постоянный технологический контроль производства, органы государственного надзора и контроля в установленном порядке — выборочный контроль. Микробиологические показатели кулинарной продукции характеризуют соблюдение технологических и санитарных требований при ее производстве, транспортировании, хранении и реализации и обусловлены тремя группами микроорганизмов: санитарно-показательные (мезофильные аэробные и факультативные микроорганизмы — КОЕ/г и бактерии кишечных палочек — коли-формы), потенциально-патогенные микроорганизмы (кишечная палочка, коагулазоположительный стафилококк и бактерии рода протея); патогенные микроорганизмы, в том числе сальмонеллы. Перечень микробиологических показателей, включаемых в нормативные документы при их разработке, специфичен для каждой группы кулинарной продукции. 3.2 Технологические свойства продуктов Технологические характеристики, или технологические свойства сырья, полуфабрикатов и готовой кулинарной продукции проявляются при их технологической обработке. Их можно подразделить на механические (прочность), физические (теплоемкость, плотность и др.), химические свойства (изменение состава, образование новых веществ) и особенности структуры (взаимное расположение и взаимосвязь составляющих продукт частей и компонентов). Технологические свойства обуславливают пригодность продукта к тому или иному способу обработки и изменение их массы, объема, формы, консистенции, цвета и других показателей в ходе обработки, т.е. формирование качества готовой продукции. 3.3 Изменения белков пищевых продуктов Изменения белков пищевых продуктов, которые наблюдаются при производстве полуфабрикатов и тепловой кулинарной обработке продуктов, влияют на выход, структурно-механические, органолептические и другие показатели качества продукции. Глубина физико-химических изменений белков определяется их природными свойствами, характером внешних воздействий, концентрацией белков и другими факторами. Белки — важнейшая составная часть пищи человека и животных. Белки представляют собой высокомолекулярные природные полимеры, молекулы которых построены из остатков аминокислот. Аминокислоты — соединения гетерофункциональные, в их молекуле содержится несколько функциональных групп — аминогруппа (NH2), карбоксильная группа (СООН) и имеющие различное строение радикалы. Белки образуются при связывании аминогруппы с карбоксильной группой соседней аминокислоты (так называемая пептидная связь). В природе обнаружено около 200 аминокислот, однако в построении белков участвуют лишь 20, их называют протеиногенными. Восемь протеиногенных аминокислот являются незаменимыми, они синтезируются только растениями и не синтезируются в нашем организме. Это валин, лейцин, изолейцин, треонин, метионин, лизин, фенилаланин, триптофан. Иногда в их число включают условно незаменимые гистидин и аргинин, которые не синтезируются в детском организме. Аминокислотный состав белков определяет биологическую ценность пищи. По строению молекул белки подразделяются на фибриллярные, или нитевидные (например, белки мышечной ткани животных), и глобулярные, или шаровидные (это большинство белков растений и других объектов). На свойства белков, проявляющиеся при переработке пищевого сырья, оказывает влияние их растворимость в различных растворителях. По этому признаку белки подразделяются на водорастворимые — альбумины, растворимые в растворах соли — глобулины, спиртов — проламины, щелочей — глютелины. Наибольшей биологической ценностью обладают альбумины и глобулины, они составляют главную часть экстрактивных веществ мясных бульонов. Водонерастворимые белки пшеницы (глиадин и глютенин) играют значительную роль при замесе теста из пшеничной муки. Определенное значение имеют фосфопротеиды — белки, содержащие фосфорную кислоту. К ним относятся казеин — главный белок молока, вителлин — белок яичного желтка, ихтулин — белок, содержащийся в икре рыб. Часть белков выполняет каталитические функции. Белковые катализаторы называются ферментами. Подавляющее большинство процессов в пищевом сырье и продуктах при их хранении и переработке происходит при участии ферментов. Ферменты являются строго специфическими соединениями и катализируют определенную реакцию между конкретными соединениями. Ферменты по их функциям классифицируют следующим образом: 1. Оксидоредуктазы — окислительно-восстановительные ферменты; 2. Трансферазы — ферменты, катализирующие перенос атомных группировок (например, остатков фосфорной кислоты, моносахаров, аминокислот) от одного соединения к другому; 3. Гидролазы — ферменты, катализирующие расщепление органических соединений при участии воды; 4. Лиазы — ферменты, катализирующие отщепление каких-либо групп от соединений; 5. Изомеразы — ферменты, катализирующие превращения органических соединений в их изомеры; 6. Лигазы (синтетазы) — ферменты, катализирующие соединение двух молекул с расщеплением пирофосфатной связи в нукле-озидтрифосфатах. Из других важных свойств, которые белки проявляют при переработке пищевого сырья, необходимо назвать их способность связывать воду, или гидрофильность. При этом белки набухают, что сопровождается их частичным растворением, увеличением массы и объема. Молекулы воды обладают полярностью, и их можно представить в виде диполей с зарядами на концах, равными по значению, но противоположенными по знаку. При контакте с белком диполи воды адсорбируются на поверхности белковой молекулы, ориентируясь вокруг полярных групп белка. Таким образом, основная часть воды, более или менее прочно связываемая в пищевых продуктах белками, является адсорбционной. Различают два вида адсорбции: ионную и молекулярную. Объясняется это постоянным наличием на поверхности белковой молекулы двух видов полярных групп: свободных и связанных. Свободные полярные группы (аминогруппы диаминокислот, карбоксильные группы дикарбоновых кислот и др.) диссоциируют в растворе, определяя величину суммарного заряда белковой молекулы. Адсорбирование воды ионизированными свободными полярными группами белка называется ионной адсорбцией. Связанные полярные группы (пептидные группы главных полипептидных цепей, гидроксильные, сульфгидрильные и др.) присоединяют молекулы воды за счет так называемой молекулярной адсорбции. Величина молекулярной адсорбции воды постоянна для каждого вида белка, величина ионной адсорбции изменяется с изменением реакции среды. В изоэлектрической точке, когда степень диссоциации молекул белка минимальная и заряд белковой молекулы близок к нулю, способность белка связывать воду наименьшая. При сдвиге рН среды в ту или иную сторону от изоэлектрической точки усиливается диссоциация основных или кислотных групп белка, увеличивается заряд белковых молекул усиливается гидратация белка. В технологических процессах свойства белков используют для увеличения их водосвязывающей способности. Адсорбционная вода удерживается белками вследствие образования между их молекулами и водой водородных связей. В растворах небольшой концентрации молекулы белка полно- стью гидратированы. В концентрированных белковых растворах и обводненных бел- ковых студнях при добавлении воды происходит дополнительная гидратация белков. Дополнительная гидратация белков в концентрированных рас- творах наблюдается, например, при добавлении к яичной массе, предназначенной для изготовления омлетов, воды или молока. В студне молекулы белка с помощью межмолекулярных связей разной природы образуют пространственную сетку, в ячейках которой удерживается вполне определенное для данного белка количество воды. Способность белка образовывать студень обусловлена конфи- гурацией его белковых молекул. Чем больше асимметрия моле- кул белка (отношение длины к толщине или диаметру), тем меньшая концентрация белка необходима для образования студня. Вода, иммобилизованная в ячейках пространственной сетки студ- ня, участвует в образовании его структуры, приближающейся к структуре твердого тела (студии способны сохранять форму, механическую прочность, упругость, пластичность). Белковые студии большинства продуктов обводнены больше, чем концентрированные растворы. Например, в миофиб- риллах мышечных волокон теплокровных животных содержится ( 15 — 20)% белков, в саркоплазме — (25 — 30)%, Гидратация белков имеет большое практическое значение при производстве полуфабрикатов: при добавлении к измельченным животным или растительным продуктам воды, поваренной соли и других веществ и при перемешивании измельченных компонентов гидратация белков состоит из протекающих одновременно про- цессов растворений и набухания. При гидратации повышается липкость массы, в результате чего она хорошо формуется в изделия (полуфабрикаты), предназначенные для тепловой кули- нарной обработки. Дополнительная гидратация белков имеет место при добавле- нии к измельченному на мясорубке мясу воды. В рубленые бифш- тексы и фрикадели добавляют воды 10% массы мяса, в фарш для пельменей — 20%. Сухие белки муки, крупы, бобовых, содержащиеся в продуктах в виде частиц высохшей цитоплазмы и алейроновых зерен, при контакте с водой набухают, образуя сплошной более или менее обводненный студень. Примером гидратации такого типа является приготовление теста, в процессе которого белки муки при контакте с водой набухают, образуя клейковину. От степени гидратации белков зависит такой важнейший показатель качества готовой продукции, как сочность. Денатурация белков — сложный процесс, при котором под влиянием температуры, механического воздействия, химических агентов происходит изменение вторичной, третичной и четвертичной структуры белковой макромолекулы, т. е. ее нативной пространственной конфигурации. Первичная структура (аминокислотная цепочка), а следовательно, и химический состав белка не изменяются. Наибольшее практическое значение имеет тепловая денатурация белков. При нагревании белков усиливается тепловое движение атомов и полипептидных цепей в белковых молекулах, в результате чего разрушаются так называемые сла- бые поперечные связи между полипептидными цепями (напри- мер, водородные), а также ослабляются гидрофобные и другие взаимодействия между боковыми цепями. В результате этого из- меняется конформация полипептидных цепей в белковой моле- куле. У глобулярных белков развертываются белковые глобулы с последующим свертыванием по новому типу; прочные (кова- лентные) связи белковой молекулы (пептидные, дисульфидные) при такой перестройке не нарушаются. Тепловую денатурацию фибриллярного белка коллагена можно представить в виде плав- ления, так как в результате разрушения большого числа попереч- ных связей между полипептидными цепями фибриллярная струк- тура его исчезает, а коллагеновые волокна превращаются в сплош- ную стекловидную массу. В молекулярной перестройке белков при денатурации актив- ная роль принадлежит воде, которая участвует в образовании но- вой конформационной структуры денатурированного белка. Пол- ностью обезвоженные белки, выделенные в кристаллическом виде очень устойчивы и не денатурируют даже при длительном нагре- вании до температуры 1000С и выше. Денатурирующий эффект внешних воздействий тем сильнее, чем выше гидратация белков и ниже их концентрация в растворе. Денатурация сопровождается изменениями важнейших свойств белка: потерей биологической активности, видовой специфичности, способности к гидратации (растворению и набуханию); улучшением атакуемости протеолетическими ферментами (в том числе пищеварительными); повышением реакционной способности белков; агрегированием белковых молекул. Агрегирование – это взаимодействие денатурированных молекул белка, в результате которого образуются межмолекулярные связи, как прочные, например, дисульфидные, так и многочисленные слабые. Следствием агрегирования белковых молекул является образование более крупных частиц. Последствия дальнейшего агрегирования частиц белка различны в зависимости от концентрации белка в растворе. В мало концентрированных растворах образуются хлопья белка, выпадающие в осадок или всплывающие на поверхность жидкости (часто с образованием пены). Примерами агрегирования такого типа являются выпадение в осадок хлопьев денатурированного лактоальбумина (при кипячении молока), образование хлопьев и пены белков на поверхности мясных и рыбных бульонов. Концентрация белков в этих растворах не превы- шает 1%. При денатурации белков в более концентрированных белковых растворах в результате их агрегирования образуется сплошной студень, удерживающий всю содержащуюся в системе воду. Такой тип агрегирования белков наблюдается при тепловой обработке мяса, рыбы, яиц и различных смесей на их основе. Белки в состоянии более или менее обводненных студней при тепловой денатурации уплотняются, т. е. происходит их дегид- ратация с отделением жидкости в окружающую среду. Реологические характеристики таких уплотненных студней зависят от темпера- туры, рН среды и продолжительности нагревания. Денатурация белков в студнях, сопровождающаяся их уплот- нением и отделением воды, происходит при тепловой обработке мяса, рыбы, варке бобовых, выпечке изделий из теста. При значениях рН среды, близких к изоэлектрической точке белка, денатурация происходит при более низкой температуре и сопровождается максимальной дегидратацией белка. Смещение рН среды в ту или иную сторону от изоэлектрической точки белка способствует повышению его термостабильности. Так, вы- деленный из мышечной ткани рыб глобулин Х, который имеет изоэлектрическую точку при рН 6,0, в слабокислой среде (рН 6,5) денатурирует при 500 С, в нейтральной (рН 7,0) при 800 С. Реакция среды влияет и на степень дегидратации белков в студнях при тепловой обработке продуктов. Направленное измене- ние реакции среды широко используется в технологии для улучше- ния качества блюд. Так, при припускании птицы, рыбы, тушении мяса, мариновании мяса и рыбы перед жаркой добавляют кислоту, вино или другие кислые приправы для создания кислой среды со значениями рН, лежащими значительно ниже изоэлектрической точки белков продукта. В этих условиях дегидратация белков в студнях снижается и готовый продукт получается более сочным. В кислой среде набухает коллаген мяса и рыбы, снижается его температура денатурации, ускоряется переход в глютин, в ре- зультате чего готовый продукт получается более нежным. Пенообразование — способность белков образовывать высококонцентрированные системы жидкость-газ (пены). Это свойство белков широко используются при получении кондитерских изделий (бисквиты, пастила, зефир, суфле). Деструкция. Молекула белков под влиянием ряда факторов может разрушаться или вступать во взаимодействие с другими веществами с образованием новых продуктов. Для доведения продукта до полной готовности денатурированные белки нагревают при темпе- ратурах, близких к 1000С, более или менее продолжительное вре- мя. В этих условиях наблюдаются дальнейшие изменения белков, связанные с разрушением их макромолекул. На первом этапе изменений от белковых молекул могут отщепляться такие летучие продукты, как аммиак, сероводород, фосфористый водород, угле- кислый газ и др. Накапливаясь в продукте и окружающей среде, эти вещества участвуют в образовании вкуса и аромата готовой пищи. При длительном гидротермическом воздействии происходит деполимеризация белковой молекулы с образованием водораство- римых азотистых веществ. Примером деструкции денатурирован- ного белка является переход коллагена в глютин. Деструкция белков имеет место при производстве некоторых видов теста. В этом случае разрушение внутримолекулярных свя- зей в белках происходит при участии протеолитических фермен- тов, содержащихся в муке и вырабатываемых дрожжевыми клет- ками. Протеолиз белков клейковины положительно влияет на ее эластичность и способствует получению выпечных изделий высо- кого качества. Однако этот процесс может иметь и отрицательные последствия, если активность протеаз муки слишком высокая (мука из недозревшего зерна и пр.). В ряде случаев деструкция белков с помощью протеолитиче- ских ферментов является целенаправленным приемом, способст- вующим интенсификации технологического процесса, улучшению качества готовой продукции, получению новых продуктов пита- ния. Примером может служить применение препаратов протеоли- тических ферментов (порошкообразных, жидких, пастообразных) для размягчения жесткого мяса, ослабления клейковины теста, получения белковых гидролизатов. Для взрослого человека достаточно (1 —1,5) г белка в сутки на 1 кг массы тела, т. е. примерно (85 — 100) г. Для детей потребность в белке значительно выше: до 1 года — более 4 г белка на 1 кг массы тела, для 2—3-летних — 4 г, для 3 —5-летних — 3,8 г, для 5—7-летних — 3,5 г. Повышенная потребность в белке у детей объясняется тем, что в растущем организме преобладают синтетические процессы и белок пищи необходим не только для поддержания азотного равновесия, но и обеспечения роста и формирования тела. Недостаток в пище белка приводит к задержке и полному прекращению роста организма, вялости, похуданию, тяжелым отекам, поносам, воспалению кожных покровов, малокровию, понижению сопротивляемости организма к инфекционным заболеваниям и т. д. Наиболее близки к идеальному белку животные белки. Большинство растительных белков имеют недостаточное содержание одной или более незаменимых аминокислот. Например, в белке пшеницы недостаточно лизина. Кроме того, растительные белки усваиваются в среднем на 75%, тогда как животные — на 90 % и более. Доля животных белков должна составлять около 55 % от общего количества белков в рационе. Опыты показали, что один животный или один растительный белок обладают меньшей биологической ценностью, чем смесь их в оптимальном соотношении. Поэтому лучше сочетать мясо с гарниром (гречихой или картофелем), хлеб с молоком и т.д. Проблема повышения биологической ценности продуктов питания издавна является предметом серьезных научных исследований. В аминокислотном балансе человека за счет преобладания в рационе продуктов растительного происхождения намечается дефицит трех аминокислот: лизина, треонина и метионина. Повышение биологической ценности продуктов питания может быть осуществлено путем добавления химических препаратов (например, концентратов или чистых препаратов лизина) и натуральных продуктов, богатых белком вообще и лизином, в частности. Применение натуральных продуктов представляет несомненные преимущества перед обогащением продуктов химическими препаратами, поскольку во всех натуральных продуктах белки, витамины и минеральные вещества находятся в естественных соотношениях и в виде природных соединений. Среди различных натуральных продуктов особого внимания ввиду высокого содержания лизина заслуживают молочные (цельное молоко, сухое обезжиренное и цельное), творог, молочные сыворотки (творожная, подсырная) в нативном, а также концентрированном и высушенном виде. 3.4 Изменения жиров пищевых продуктов Эта группа высокоэнергетических органических веществ является основной составной частью товарных жировых продуктов. Доля липидов в растительных маслах составляет практически 100 %, а в маргарине и сливочном масле (60—82)%. Кроме этого, липиды в качестве компонентов входят во многие виды пищевого сырья, а также в кулинарные изделия. Наличие липидов в первую очередь определяет высокую энергетическую ценность (калорийность) отдельных продуктов питания, чрезмерное потребление которых приводит к избыточной массе тела. Вместе с тем многие изделия, содержащие много липидов, портятся, так как жиры легко подвергаются окислению, или прогорканию. Липиды — природные биологически активные соединения и их синтетические аналоги, структурные компоненты которых построены из остатков высокомолекулярных жирных кислот, спиртов, альдегидов, полиолов (главным образом, глицерин и диолы). Эти функциональные группы соединены между собой сложноэфирной, простой эфирной, амидной, фосфоэфирной, гликозидной и другими связями. Все липиды нерастворимы в воде (гидрофобны) и хорошо растворяются в органических растворителях (бензин, диэтиловый эфир, хлороформ и др.). К липидам относятся триацилглицерины, или собственно жиры (простые липиды), а также сложные липиды. Наиболее важная и распространенная группа сложных липидов — фосфолипиды. Молекула их построена из остатков спиртов, высокомолекулярных жирных кислот, фосфорной кислоты, азотистых оснований. Фосфолипиды — обязательный компонент клеток, вместе с белками и углеводами они участвуют в построении мембран клеток и субклеточных структур, выполняя роль своеобразного каркаса. Фосфолипиды — хорошие эмульгаторы, применяются в хлебопекарной и кондитерской промышленности, в маргариновом производстве. В состав сложных липидов могут входить гликолипиды, содержащие в качестве структурных компонентов углеводные фрагменты (остатки глюкозы, галактозы и т.д.). Липиды могут образовывать комплексы с белками — липопротеины. При выделении липидов из масличного сырья в масло переходит большая группа сопутствующих им жирорастворимых веществ: стероиды, пигменты, жирорастворимые витамины. Липиды являются источниками энергии. При окислении в организме человека 1 г жира выделяется 9 ккал, причем это сопровождается образованием большого количества воды: при полном распаде (окислении) из 100 г жира выделяется 107 г эндогенной воды. Липиды выполняют структурно-пластическую функцию как компонент клеточных и внутриклеточных мембран всех тканей. Мембранные структуры клеток, образованные двумя слоями фосфолипидов и белковой прослойкой, содержат ферменты, при участии которых обеспечивается упорядоченность потоков продуктов обмена в клетки и из них. В организме человека и животных жир находится в двух видах: структурный (протоплазматический) и резервный. Структурный жир входит в состав клеточных структур. Резервный накапливается в жировых депо (подкожный жировой слой, околопочечный жир, в брюшной полости). Жиры являются растворителями витаминов A, D, Е, К и способствуют их усвоению. В состав жиров входят насыщенные и ненасыщенные жирные кислоты. Насыщенные жирные кислоты масляная, пальмитиновая, стеариновая используются организмом в целом как энергетический материал. Больше всего их содержится в животных жирах и они могут синтезироваться в организме из углеводов (или белков). Ненасыщенные жирные кислоты делятся на моно- и полиненасыщенные. Наиболее распространенной мононенасыщенной жирной кислотой является олеиновая, ее также много в животных жирах. Особое значение для организма человека имеют полиненасыщенные жирные кислоты (ПНЖК) — линолевая, линоленовая и арахидоновая. Наиболее ценная из них линолевая, при постоянном ее недостатке организм погибает. Полиненасыщенные жирные кислоты иначе называют витамином F (от англ, «fat» — жир), так как они практически не синтезируются в организме и должны поступать с пищей. Полиненасыщенные жирные кислоты содержатся в растительных жирах. Важнейшими источниками растительных жиров являются растительные масла - 99,9 % жира, орехи - (53—65) %, овсяная крупа - 6,9 %. Источники животных жиров — свиной шпик - (90—92) %, сливочное масло - (72—82) %, жирная свинина - 49 %, сметана - 30 %, сыры – (15-30)%. Во многих пищевых продуктах содержится определенное количество жироподобных веществ — стеринов, наиболее важен из них холестерин. Холестерин является нормальным компонентом большинства клеток здорового организма: входит в состав оболочек и других частей клеток и тканей организма, используется для образования ряда высокоактивных веществ, в том числе желчных кислот, половых гормонов, гормонов надпочечников. Особенно много холестерина в тканях головного мозга (2 %). Суточная потребность в холестерине составляет 0,5 г. Из них 20% поступает с пищей, 80% синтезируется нашим организмом. Однако холестерин не относится к незаменимым веществам пищи, поскольку он легко синтезируется в организме из продуктов окисления углеводов и жиров. Таким образом, содержание холестерина в тканях зависит не только от количества его в пище, но и от интенсивности синтеза в организме. У здорового взрослого человека количество холестерина, поступающего с пищей и синтезирующегося, с одной стороны, и холестерина, распадающегося и удаляемого из организма — с другой, уравновешено. В крови, желчи холестерин удерживается в виде коллоидного раствора благодаря связыванию с фосфатидами, ненасыщенными жирными кислотами, белками. При нарушении обмена этих веществ или их недостатке холестерин выпадает в виде мелких кристаллов, оседающих на стенках кровеносных сосудов, в желчных путях, что обусловливает нарушение их функций, способствует появлению атеросклеротических бляшек в сосудах, образованию желчного камня. Наиболее богаты холестерином яйца, сливочное масло, сыр, мясо, сердце, печень. Для глицеридов, составляющих основную массу масел и жиров, характерны следующие превращения: окисление, обмен остатков жирных кислот, входящих в их молекулы, гидролиз и др. Жиры являются составной частью многих кулинарных изделий, выполняют роль теплопередающей и антиадгезионной среды при тепловой обработке продуктов. Если жир используется в качестве теплопередающей среды, особенно при жарке продуктов во фритюре, первостепенное зна- чение приобретают такие его показатели, как термостойкость, низ- кие влажность и вязкость в нагретом состоянии, отсутствие резко выраженных вкуса и запаха. Не следует также использовать для фритюрной жарки высоконепредельные растительные масла, так как пищевая ценность их при продолжи- тельном нагреве существенно снижается. При свободном доступе воздуха происходит окисление жиров, которое ускоряется с повышением их температуры. При темпера- турах хранения (от 2 до 25)0С в жире происходит автоокисление, при температурах жарки (от 140 до 200)0С — термическое окис- ление. В начальный период автоокисления имеет место длительный индукционный период, в течение которого накапливаются свобод- ные радикалы. Однако, как только концентрация их достигнет определенного значения, индукционный период заканчивается и начинается автокаталитическая цепная реакция — процесс быст- рого присоединения к радикалам кислорода. Первичными продуктами автокаталитической цепной реакции являются гидропере- киси, склонные к реакциям распада, в результате которых обра- зуются два новых радикала, увеличивающие скорость цепной реакции. При соединении двух радикалов с образованием неактив- ной молекулы может произойти обрыв цепи автокаталитической цепной реакции. Если жир нагрет до температуры от (140 до 200)0С - (жарка продуктов), индук- ционный период резко сокращается. Присоединение кислорода к углеводородным радикалам жирных кислот происходит более беспорядочно, минуя некоторые стадии, имеющие место при авто окислении. Некоторые продукты окислении жиров (гидропере- киси, эпоксиды, альдегиды и др.), относительно устойчивые при температурах автоокисления, не могут длительно существовать при высоких температурах термического окисления и распадаются по мере образования. В результате их распада образуется много- численная группа новых реакционноспособных веществ, увеличи- вающих возможность вторичных химических реакций в нагретом жире и их многообразие. Продукты, образующиеся при авто- и термическом окислении. можно подразделить на три группы:
Помимо окислительных изменений, при любом способе тепло- вой обработки в жирах происходят гидролитические процессы, обусловленные воздействием на жир воды и высокой температуры. В присутствии воды гидролиз жира протекает в три стадии. На первой стадии от молекулы триглицерида отщепляется одна молекула жирной кислоты с образованием диглицерида. Затем от диглицерида отщепляется вторая молекула жирной кислоты с об- разованием моноглицерида. И наконец, в результате отделения от моноглицерида последней молекулы жирной кислоты образуется свободный глицерин. Ди- и моноглицериды, образующиеся на промежуточных стадиях, способствуют ускорению гидролиза. При полном гидролитическом расщеплении молекулы триглицерида об- разуется одна молекула глицерина и три молекулы свободных жирных кислот. Преобладание в жире гидролитического или окислительного процесса зависит от интенсивности воздействия на него темпе- ратуры, кислорода воздуха и воды, а также продолжительности нагревании и присутствия веществ, ускоряющих или замедляю- щих эти процессы. |