Магазины электрических величин
Вид материала | Документы |
- Рабочей программы дисциплины Электроэнергетические системы и сети по направлению подготовки, 21.71kb.
- Отчет по лабораторной работе должен содержать: наименование работы и номер, схемы, 365.83kb.
- Экзаменационные вопросы по курсу «Электротехника и электроника», 23.91kb.
- Бизнес-план магазина товаров для детей Содержание, 138.19kb.
- 1. Основные понятия и обозначения электрических величин и элементов электрических цепей., 277.03kb.
- Цифровой вольтметр щ-304, 137.06kb.
- Телемеханики, 26.01kb.
- Отдел метрологического обеспечения измерений электрических величин, 42.58kb.
- Курсовая работа по курсу «основы физических измерений», 226.86kb.
- Теория электрических цепей (часть, 63kb.
МАСКИРОВКА ЗВУКА, психофизиол. явление, заключающееся в повышении порога слышимости данного звука (сигнала) под влиянием др. звуков (помех). М. з. количественно выражается числом децибел, на к-рое повышается порог слышимости сигнала в присутствии помехи. М. з. максимальна при совпадении физ. параметров сигналов и помех и снижается при увеличении различий в этих параметрах. Различают след. виды М. з.: одновременную (сигнал и помеха действуют одновременно), разновременную прямую (помеха предшествует сигналу) и обращённую (сигнал предшествует помехе), разнесённую по частоте (сигнал и помеха имеют разные частоты), разнесённую в пр-ве (источники сигнала и помехи расположены в разл. местах в пр-ве). Тоны низких частот оказывают большее маскирующее действие, чем тоны высоких частот. Маскировка чистого тона шумом определяется полосой шума, расположенной вокруг частоты тона (т. н. критич. полосой слуха). Критич. полоса составляет для человека ок. 80 Гц при частоте тона ниже 500 Гц и 16% от ср. частоты при частотах тона выше 1 кГц. Н. А. Дубровский. МАССА (лат. massa, букв.— глыба, ком, кусок), физ. величина, одна из осн. хар-к материи, определяющая её инерционные и гравитац. св-ва. Понятие «М.» было введено в механику И. Ньютоном в определении импульса (кол-ва движения) тела — импульс р пропорц. скорости свободного движения тела v: p=mv, (1) где коэфф. пропорциональности m — постоянная для данного тела величина, его М. Эквивалентное определение М. получается из ур-ния движения классической механики Ньютона: f=mа. (2) Здесь М.— коэфф. пропорциональности между действующей на тело силой f и вызываемым ею ускорением а. Определённая таким образом М. характеризует св-ва тела, явл. мерой его инерции (чем больше М. тела, тем меньшее ускорение оно приобретает под действием пост. силы) и наз. инерциальной или и н е р т н о й М. В теории гравитации Ньютона М. выступает как источник поля тяготения. Каждое тело создаёт поле тяготения, пропорц. М. тела, и испытывает воздействие поля тяготения, создаваемого др. телами, сила к-рого также пропорц. М. Это поле вызывает притяжение тел с силой, определяемой законом тяготения Ньютона: ![]() 392 где r — расстояние между центрами масс тел, G — универсальная гравитационная постоянная, а m1 и m2 — М. притягивающихся тел. Из ф-лы (3) можно получить зависимость между М. тела m и его весом Р в поле тяготения Земли: P=mg, (4) где g=GM/r2 — ускорение свободного падения (М — М. Земли, rR, где R — радиус Земли). М., определяемая соотношениями (3) и (4), наз. г р а в и т а ц и о н н о й. В принципе ниоткуда не следует, что М., создающая поле тяготения, определяет и инерцию того же тела. Однако опыт показал, что инертная и гравитац. М. пропорц. друг другу (а при обычном выборе ед. измерения численно равны). Этот фундам. закон природы наз. принципом эквивалентности. Экспериментально принцип эквивалентности установлен с очень большой точностью — до 10-12 (1971). Первоначально М. рассматривалась (напр., Ньютоном) как мера кол-ва в-ва. Такое определение имеет вполне определ. смысл только для однородных тел, подчёркивает аддитивность М. и позволяет ввести понятие плотности — М. ед. объёма тела. В классич. физике считалось, что М. тела не изменяется ни в каких процессах [закон сохранения М. (в-ва)]. Понятие «М.» приобрело более глубокий смысл в спец. теории относительности А. Эйнштейна (см. Относительности теория), рассматривающей движение тел (или ч-ц) с очень большими скоростями — сравнимыми со скоростью света с3•1010 см/с. В новой механике, наз. релятивистской, связь между импульсом и скоростью ч-цы даётся соотношением: ![]() [при малых скоростях (v << с) это соотношение переходит в соотношение (1)]. Величину m0 называют массой покоя, а массу m движущейся ч-цы определяют как зависящий от скорости коэфф. пропорциональности между р и v. ![]() т. е. М. ч-цы (тела) растёт с увеличением её скорости. В релятив. механике определения М. из ур-ний (1) и (2) неэквивалентны, т, к. ускорение перестаёт быть параллельным вызвавшей его силе и М. получается зависящий от направления скорости ч-цы. Согласно теории относительности, М. ч-цы связана с её энергией ξ соотношением: ![]() М. покоя m0 определяет внутр. энергию ч-цы — т. н. энергию покоя ξ0=m0c2. Т.о., с М. всегда связана энергия (и наоборот), поэтому в релятив. механике не существуют по отдельности законы сохранения М. и энергии — они слиты в единый закон сохранения полной (т. е. включающей энергию покоя ч-ц) энергии. Приближённое их разделение возможно лишь в классич. физике, когда v < Единицей М. в системе единиц СГС служит грамм, а в СИ — килограмм. М. атомов и молекул обычно измеряется в атомных единицах массы. М. элем. ч-ц принято выражать либо в ед. М. эл-на (mе), либо в энергетич. единицах (указывается энергия покоя соответствующей ч-цы). Так, М. эл-на (me) составляет 0,511 МэВ, М. протона — 1836,1 mе, или 938,2 МэВ, и т. д. Природа М.— одна из важнейших ещё не решённых задач физики. Принято считать, что М. элем ч-цы определяется полями, к-рые с ней связаны (эл.-магн., ядерным и др.). Однако количеств. теория М. ещё не создана. Не существует также теории, объясняющей, почему М. элем. ч-ц образуют дискр. спектр значений, и тем более позволяющей определить этот спектр. • Джеммер М., Понятие массы в классической и современной физике, пер. с англ., М., 1967; X а й к и н С. Э., Физические основы механики, 2 изд., М., 1971. Я. А. Смородинский. МАССА ПОКОЯ частицы, масса ч-цы в системе отсчёта, в к-рой она покоится; одна из осн. характеристик элем. ч-цы, обычно наз. просто её массой. См. также Относительности теория. МАСС-АНАЛИЗАТОР, устройство для пространств. или временного разделения ионов с разл. значениями отношения массы к заряду. Один из осн. элементов масс-спектрометра. МАССОВАЯ СИЛА, то же, что объёмная сила. МАССОВОЕ ЧИСЛО, суммарное число нуклонов (нейтронов и протонов) в ат. ядре. Различно для изотопов одного хим. элемента. МАСС-СЕПАРАТОР, прибор для измерения массовых чисел А нуклидов, образующихся в яд. реакциях на ускорителях или в яд. реакторах. При изучении радиоактивных долгоживущих нуклидов (период полураспада > 1 мин) в кач-ве М.-с. используют статич. масс-спектрометры со спец. конструкцией ионного источника, позволяющей быстро помещать образец в источник ионов или облучать его непосредственно в масс-спектрометре. Для определения А короткоживущих нуклидов используются М.-с. с торможением ионов в камере, наполненной газом и помещённой в поперечное магн. поле. При определ. условиях изменение заряда иона (при торможении ядра «обрастают» эл-нами) компенсируется изменением его скорости, и радиус траектории определяется лишь массой иона. Разрешающая способность газонаполненных М.-с. ~ 100, мин. время анализа ~10-3 c. И. О. Лейпунский. МАСС-СПЕКТРОМЕТР, прибор для разделения ионизов. молекул и атомов по их массам, основанный на воздействии магн. и электрич. полей на пучки ионов, летящих в вакууме. В М.-с. регистрация ионов осуществляется электрич. методами, в м а с с - с п е к т р о г р а ф а х — по потемнению фоточувствит. слоя. М.-с. (рис. 1) обычно содержит устройство для подготовки исследуемого в-ва 1, ионный источник 2, где это в-во частично ионизуется и происходит формирование ионного пучка, масс-анализатор 3, в к-ром происходит разделение ионов по массам, точнее, обычно по величине отношения массы m иона к его заряду е, приёмник ионов 4, где ионный ток преобразуется в электрич. сигнал, к-рый усиливается ![]() Рис. 1. Блок-схема масс-спектрометра (пунктиром обведена вакуумируемая часть прибора). 393 (усилитель 5) и регистрируется. В регистрирующее устройство 6, помимо информации о кол-ве ионов (ионный ток), из анализатора поступает также информация о массе ионов. М.- с. содержит системы электрич. питания 8 и устройства 9, создающие и поддерживающие высокий вакуум в ионном источнике и анализаторе. Иногда М.-с. соединяют с ЭВМ. При любом способе регистрации ионов спектр масс в конечном счёте представляет собой зависимость ионного тока I от m. Напр., в масс-спектре свинца (рис. 2) каждый из пиков ![]() Рис. 2. Масс-спектр свинца, образующегося при распаде тория; m50% — ширина пика на полувысоте, m10% — на уровне 1/10 от макс. интенсивности. ионного тока соответствует однозарядным ионам изотопов свинца. Высота каждого пика пропорц. содержанию изотопа в свинце. Отношение массы иона к ширине пика 8т (в атомных единицах массы) наз. разрешающей способностью R М.-с.: R=m/m. Т. к. m на разных уровнях относительно интенсивности ионного тока различна, то R также различна. Напр., в области пика изотопа 208Pb (рис. 2) на уровне 10% относительно вершины пика R = 230, а на полувысоте R=380. Для полной хар-ки разрешающей способности прибора необходимо знать форму ионного пика, к-рая зависит от мн. факторов. Иногда разрешающей способностью наз. значение той наибольшей массы, при к-рой два пика, отличающиеся по массе на единицу, разрешаются' до заданного уровня. Т. к. для мн. типов М.-с. R не зависит от отношения m/e, то оба приведённых определения R совпадают. Считается, что М.-с. с R до 102 имеет низкую разрешающую способность, с R ~ 102 —103 — среднюю. с R ~103—104 — высокую, с R~104—105 — очень высокую. Если в-во вводится в ионный источник в виде газа, то чувствительностью М.-с. наз. отношение тока, создаваемого ионами данной массы заданного в-ва. к парциальному давлению этого в-ва в ионном источнике. Эта величина в М.-с. разных типов лежит в диапазоне 10-6—10-3 А/мм рт. ст. Относит, чувствительностью наз. мин. содержание в-ва, к-рое ещё может быть обнаружено в смеси с помощью М.-с. Для разных М.-с., смесей и в-в она лежит в диапазоне 10-3—10-7%. За абс. чувствительность иногда принимают мин. кол-во в-ва в граммах, к-рое необходимо ввести в М.-с. для обнаружения этого в-ва. Масс-анализаторы. По типу анализаторов различают статич. и динамич. М.-с. В статич. масс-анализаторах для разделения ионов используются электрич. и магн. поля, постоянные или практически не изменяющиеся за время пролёта иона через прибор. Ионы с разл. значениями m/e движутся в анализаторе по разным траекториям (см. Электронная и ионная оптика). В масс-спектрографах пучки ионов с разными величинами m/e фокусируются в разных местах фотопластинки, образуя после проявления следы в виде полосок (входное и выходное отверстия ионного источника обычно имеют форму прямоуг. щелей). В статич. М.-с. пучок ионов с заданными m/e фокусируется на щель приёмника ионов. При плавном изменении магн. или электрич. поля в приёмную щель последовательно попадают пучки ионов с разными m/e. При непрерывной записи ионного тока получается график с ионными пиками — масс-спектр (в масс-спектрографе используются микрофотометры). В наиболее распространённом статич. масс-анализаторе с однородным магн. полем (рис. 3) ионы, образованные в ионном источнике, выходят из щели шириной S1 в виде расходящегося пучка, к-рый в магн. поле разделяется на пучки ионов с разными m/e (mа/e, mb/e, mс/e), ![]() Рис. 3. Схема статич. масс-анализатора с однородным магн. полем: S1 и S2 — щели источника и приёмника ионов; ОАВ — область однородного магн. поля H, перпендикулярного плоскости рисунка; тонкие сплошные линии — границы пучков ионов с разными m/e; r — радиус центр. траектории ионов. причём пучок ионов с массой mb фокусируется на щель шириной S2 приёмника ионов. Величина mb/e определяется выражением: ![]() где mb — масса иона, е — его заряд (в ед. алементарного электрического заряда), r — радиус центр. траектории ионов (в см), Н — напряжённость магн. поля (в Э), V — ускоряющий потенциал (в В). Развёртка масс-спектра производится изменением Н или V. Первый метод предпочтительнее, т. к. в этом случае по ходу развёртки не изменяются условия вытягивания ионов из источника. Разрешающая способность статич-М.-с. определяется из соотношения: ![]() где 1 — реальная ширина пучка в месте, где он попадает в щель приёмника S2 Если бы фокусировка ионов была идеальной, то в случае X1=X2 (рис. 3) 1 была бы в точности равна S1. В действительности 1>S1, что уменьшает разрешающую способность М.-с. Одна из причин уширения пучка — неизбежный разброс по кинетич. энергии у ионов, вылетающих из ионного источника (см. ниже). Другие причины — рассеяние ионов в анализаторе из-за столкновения с молекулами остаточного газа, а также электростатич. «расталкивание» ионов в пучке. Для ослабления влияния этих факторов применяют т. н. «наклонное вхождение» пучка в анализатор и криволинейные границы магн. поля. В нек-рых М.-с. используют неоднородные магн. поля, а также ионные призмы (см. Электронные призмы). Для уменьшения рассеяния ионов стремятся к созданию в анализаторе высокого вакуума (р:10-8 мм рт. ст.). Для ослабления влияния разброса по энергиям применяют М .-с. с двойной фокусировкой, к-рые фокусируют на щель S2 ионы с одинаковыми m/e, вылетающие не только по разным ![]() Рис. 4. Схема масс-анализатора с двойной фокусировкой. Пучок ускоренных ионов, вышедших из щели S1 источника ионов, проходит через электрич. поле цилиндрич. конденсатора, к-рый отклоняет ионы на 90°, затем через магн. поле, отклоняющее ионы ещё на 60°, и фокусируется в щель S2 приёмника коллектора ионов. направлениям, но и с разными энергиями. Для этого ионный пучок пропускают через магнитное и отклоняющее электрич. поле спец. формы (рис. 4). Сделать S1 и S2 меньше неск. мкм технически трудно. Кроме того, это привело бы к очень малым ионным токам. Поэтому для получения R ~ 103—104 используют большие r, т. е. длинные ионные траектории (до неск. м). В динамич. масс-анализаторах для разделения ионов с разными m/e используют, как правило, разные времена пролёта ионами определ. расстояния и воздействие на ионы импульсных или радиочастотных электрич. полей с периодом, меньшим или равным времени пролёта ионов через анализатор. Существует более 10 типов динамич. масс-анализаторов: время-пролётный, радиочастотный, 394 квадрупольный, фарвитрон, омегатрон, магниторезонансный, циклотронно-резонансный и др. Во в р е м я - п р о л ё т н о м м а с с-а н а л и з а т о р е (рис. 5) ионы образуются в ионном источнике и очень коротким электрич. импульсом «впрыскиваются» в виде «ионного пакета» через сетку .1 в анализатор 2, представляющий собой эквипотенциальное пр-во. В процессе дрейфа к коллектору 3 исходный пакет «расслаивается» на неск. пакетов, каждый из к-рых состоит из ионов с одинаковыми m/e. ![]() Рис. 5. Схема время-пролётного масс-анализатора. Пакет ионов с массами m1 и m2 (чёрные и белые кружки) движется в дрейфовом пр-ве анализатора так, что тяжёлые ионы (m1) отстают от лёгких (m2). Расслоение обусловлено тем, что в исходном пакете энергии всех ионов одинаковы, а их скорости и, следовательно, времена пролёта t через анализатор длиной L обратно пропорц. m : t=L(m/2eV). (3) Последовательность ионных пакетов, приходящих на коллектор, образует масс-спектр, к-рый регистрируется. Разрешающая способность R ~ 103. В радиочастотном масс-анализаторе (рис. 6) ионы ![]() Рис. 6. Схема радиочастотного масс-анализатора. Ионы с определ. скоростью и, следовательно, определ. массой, внутри каскада .ускоряясь ВЧ полем, получают прирост кинетич. энергии, достаточный для преодоления тормозящего поля и попадания на коллектор. приобретают в ионном источнике энергию eV и проходят через систему последовательно расположенных сеточных каскадов. Каждый каскад представляет собой три плоскопараллельные сетки 1,2, 3, расположенные на равном расстоянии друг от друга. ср. сетке относительно двух крайних приложено ВЧ электрич. поле Uвч. При фиксированных частоте этого поля и энергии ионов eV только ионы с определённым m/e имеют такую скорость v, что, двигаясь между сетками 1 и 2 в полупериоде, когда поле между ними явл. ускоряющим для ионов, они пересекают сетку 2 в момент смены знака поля и проходят между сетками 2 и 3 также в ускоряющем поле. Т. о., они получают макс. прирост энергии и попадают на коллектор. Ионы др. масс, проходя эти каскады, либо тормозятся полем, т. е. теряют энергию, либо получают недостаточный прирост энергии и отбрасываются в конце пути от коллектора высоким тормозящим потенциалом {U3. В результате на коллектор попадают только ионы с определённым m/e. Масса таких ионов определяется из соотношения: m=а(V/s22), (4) где а — постоянная прибора, s — расстояние между сетками. Перестройка анализатора на регистрацию ионов др. масс осуществляется изменением либо нач. энергии ионов, либо частоты ВЧ поля. В к в а д р у п о л ь н о м м а с с - а н а л и з а т о р е, или ф и л ь т р е м а с с, разделение ионов осуществляется в поперечном электрич. поле с гиперболич. распределением потенциала. Поле создаётся квадрупольным конденсатором, между парами стержней к-рого приложены постоянное и ВЧ напряжения (рис. 7). Пучок ионов вводится в вакуумную камеру анализатора вдоль оси квадруполя через отверстие 1. При фиксиров. значениях частоты и амплитуды перем. напряжения U0 только у ионов с определ. значением m/e амплитуда колебаний в направлении, поперечном оси анализатора, не превышает рас- ![]() стояния между стержнями. Такие ионы за счёт нач. скорости проходят через анализатор, и, выходя из него через отверстие 2, регистрируются, попадая на коллектор ионов. Сквозь квадруполь проходят ионы, масса к-рых удовлетворяет условию: m=aU0/2, (5) где а — постоянная прибора. Амплитуда колебаний ионов др. масс нарастает по мере их движения в анализаторе так, что эти ионы достигают стержней и нейтрализуются. Перестройка на регистрацию ионов др. масс осуществляется изменением амплитуды U0 или частоты перем. составляющей напряжения. Разрешающая способность R ~ 103. В ф а р в и т р о н е ионы образуются непосредственно в самом анализаторе при соударениях молекул с эл-нами, летящими с катода, и совершают колебания вдоль оси прибора между электродами 1 и 2 (рис. 8) с частотой . Колебания обусловлены ![]() Рис. 8. Схема фарвитрона. распределением потенциала между электродами. При совпадении частоты этих колебаний с частотой перем. напряжения Uвч, подаваемого на сетку, ионы приобретают дополнит. энергию, преодолевают потенциальный барьер и попадают на коллектор. Условие резонанса имеет вид: =a(U0/m), (6) где а — постоянная прибора. В динамич. М.-с. с поперечным (относительно траектории ионов) магн. полем разделение ионов по массам основано на совпадении циклотронной частоты иона с частотой перем. напряжения, приложенного к электродам анализатора. ![]() Рис, 9. Схема анализатора омегатрона. Так, в о м е г а т р о н е (рис. 9) под действием приложенных высокочастотного электрич. поля |