Магазины электрических величин
Вид материала | Документы |
- Рабочей программы дисциплины Электроэнергетические системы и сети по направлению подготовки, 21.71kb.
- Отчет по лабораторной работе должен содержать: наименование работы и номер, схемы, 365.83kb.
- Экзаменационные вопросы по курсу «Электротехника и электроника», 23.91kb.
- Бизнес-план магазина товаров для детей Содержание, 138.19kb.
- 1. Основные понятия и обозначения электрических величин и элементов электрических цепей., 277.03kb.
- Цифровой вольтметр щ-304, 137.06kb.
- Телемеханики, 26.01kb.
- Отдел метрологического обеспечения измерений электрических величин, 42.58kb.
- Курсовая работа по курсу «основы физических измерений», 226.86kb.
- Теория электрических цепей (часть, 63kb.
Понижение темп-ры и увеличение Н приводит к увеличению (/). П. Л. Капица в 1927, используя сильные магн. поля (в неск. сотен тысяч Э) при темп-ре жидкого азота, обнаружил у большого числа металлов и в широком интервале полей линейную зависимость (/) от Н (з а к о н К а п и ц ы). В слабых полях (/) пропорц. Н2. Коэфф. пропорциональности обычно положителен, т. е. сопротивление растёт с увеличением магн. поля; исключение составляет ферромагнетики (см. Кондо эффект). Т. к. сопротивление чувствительно к кол-ву примесей и дефектов в крист. решётке, а также к темп-ре, то измерения (на определ. образце, при определ. темп-ре) могут приводить к разным зависимостям от Н. Эксперим. данные для металлов удобно описывать, выразив (/) в виде ф-ции от Hэф=H(300/),. где 300— сопротивление данного металла при комнатной темп-ре (300 К) и H=0, а — при темп-ре эксперимента и при H=0. При этом разл. данные, относящиеся к одному металлу, укладываются на одну прямую (п р а в и л о К о л е р а). Резкая анизотропия сопротивления в сильных магн. полях (у Au, Ag, Cu, Sn и др. небольшое изменение ориентации магн. поля может привести к изменению иногда в 1000 раз) означает анизотропию Ферми поверхности (небольшая анизотропия соответствует изотроп. поверхности Ферми). Если с ростом Н для всех направлений не стремится к «насыщению» — не перестаёт расти (Bi, As и др.), то эл-ны и дырки содержатся в проводнике в равном кол-ве. Стремление к насыщению означает преобладание носителей одного типа.
М. э. используется для исследования электронного энергетич. спектра и механизма рассеяния носителей тока в проводниках, а также для измерения магн. полей.
• См. лит. при ст. Гальваномагнитные явления.
Э. М. Эпштейн.
МАГНИТОРЕЗОНАНСНЫЙ МАСС-СПЕКТРОМЕТР, устройство, в к-ром для разделения ионов по отношению массы к заряду используется движение «узкого» пакета ионов, сформированного в модуляторе, в однородном магн. поле. Ионы, циклотронная частота к-рых совпадает с частотой перем. напряжения, приложенного к электродам модулятора, дополнительно ускоряются и после неск. оборотов по расширяющимся траекториям попадают на коллектор. М. м.-с. используется для прецизионных измерений масс ионов, а также для изотопного анализа. См. Масс-спектрометр.
МАГНИТОСТАТИКА, раздел теории эл.-магн. поля, в к-ром изучаются св-ва стационарного магнитного поля (поля пост. электрич. токов или поля пост. магнитов). Для расчёта этих полей часто пользуются понятием магнитного заряда, позволяющим применять в М. ф-лы, аналогичные ф-лам электростатики. Формально это возможно благодаря теореме эквивалентности поля магн. зарядов и поля пост. электрич. токов (см. Ампера теорема), хотя в природе свободных магн. зарядов не существует (см. Магнитный монополь).
• Т а м м И. Е., Основы теории электричества, 9 изд., М., 1976.
МАГНИТОСТРИКЦИОННЫЕ МАТЕРИАЛЫ, ферромагнитные металлы и сплавы (см. Ферромагнетик), а также ферриты, обладающие хорошо выраженными магнитострикц. св-вами
383
ХАРАКТЕРИСТИКИ МАГНИТОСТРИКЦИОННЫХ МАТЕРИАЛОВ

Примечание: k, соответствуют Н0 опт; для а приведены макс. значения.
(см. Магнитострикция) и применяемые для изготовления магнитострикционных преобразователей эл.-магн. энергии в механич. и обратно (излучатели акустич. колебаний, датчики давления, фильтры и др. приборы). Осн. хар-ки М. м. (см. табл.): коэфф. магнитомеханич. связи k, квадрат к-рого равен отношению преобразованной энергии (механич. или магнитной) к подводимой (соответственно магнитной или механической) без учёта потерь; динамические магнитострикц. постоянная а, определяющая чувствительность преобразователя в режиме излучения, и относительная магнитная проницаемость ; скорость звука с; магнитострикция насыщения s, определяющая предельную интенсивность звука, излучаемого преобразователем; коэрцитивная сила Нс и уд. электрич. сопротивление , характеризующие потери энергии соотв. на гистерезис и на вихревые токи. Магнитострикц. преобразователи работают, как правило, при пост. поле подмагничивания Н0, соответствующем максимуму k (H0 опт) или несколько большем.
Металлич. М. м. изготавливают в виде лент толщиной 0,1—0,3 мм, из к-рых штампуют или навивают сердечники, ферриты-шпинели применяют в виде монолитных сердечников, ферриты-гранаты — в виде монокристаллов.
И. П. Голямина.
МАГНИТОСТРИКЦИОННЫЙ ПРЕОБРАЗОВАТЕЛЬ, электромеханический или электроакустический преобразователь, действие к-рого основано на эффекте магнитострикции. В М. п. используется линейная магнитострикция ферромагнетиков в области техн. намагничивания (см. Ферромагнетизм). М. п. представляет собой сердечник из магнитострикц. материалов с нанесённой на него обмоткой.
В М. п.— излучателе энергия перем. магн. поля, создаваемого в сердечнике протекающим по обмотке перем. электрич. током, преобразуется в энергию механич. колебаний сердечника; в М. п.— приёмнике энергия механич. колебаний, возбуждаемых действующей на сердечник внеш. перем. силой, преобразуется в энергию магн.
поля, наводящего перем. эдс в обмотке.
М. п. используются в гидроакустике, УЗ технологии, акустоэлектронике в кач-ве излучателей и приёмников звука, фильтров, резонаторов, стабилизаторов частоты и т. п., а также в технике в кач-ве датчиков колебаний. Материалом для М. п.— излучателей и приёмников звука в гидроакустике и УЗ технике, работающих на частотах ~100 Гц — 100 кГц, служат металлич. магнитострикц. материалы и керамич. ферриты (на основе феррита никеля). Для фильтров, резонаторов и др. устройств акустоэлектроники в диапазоне десятков и сотен кГц используются магнитострикц. ферриты-шпинели, на частотах до десятков и сотен МГц — ферриты-гранаты на основе редкозем. элементов.
М. п. чаще всего работают в режиме резонансных колебаний сердечника. Сердечники М. п. в гидроакустич. устройствах или в установках пром. применения УЗ представляют собой обычно радиально колеблющиеся кольца или продольно колеблющиеся стержни, соединённые между собой приёмно-излучающими накладками.

Преобразователи из металлич. магнитострикц. материалов с сердечниками стержневой (а) и кольцевой (б и в) формы.
Сердечники из металлич. материалов для уменьшения потерь на вихревые токи набирают из штампованных пластин толщиной 0,1—0,3 мм (рис., а, б) или навивают из тонкой ленты (рис., в). Сердечники из ферритов используют монолитными. Ферритовые сердечники в фильтрах, резонаторах и т. п. устройствах имеют форму колец, гантелей, трубок. М. п. обладают электроакустич. кпд ~50%. Макс. интенсивность излучения М. п. ограничивается при работе на значит. акустич. нагрузку нелинейностью св-в материала, обусловленную явлением магн. насыщения, а при работе с малой нагрузкой ограничивается механич. прочностью материала. М. п. на основе монокристаллов феррита-граната иттрия (ИФГ) обеспечивают устройствам акустоэлектроники в акустич. СВЧ диапазоне добротность до 107.
• Харкевич А. А., Теория преобразователей, М.—Л., 1948; Матаушек И., Ультразвуковая техника, пер. с нем., М., 1962; Ультразвуковые преобразователи, под ред. Е. Кикучи, пер. с англ., М., 1972.
И. П. Голямина.
МАГНИТОСТРИКЦИЯ (от магнит и лат. strictio — сжатие, натягивание), изменение формы и размеров тела при его намагничивании; открыто англ. учёным Дж. Джоулем (1842). В ферро- и ферримагнетиках (Fe, Ni, Со, Gd, Tb, Dy и др., в ряде сплавов, ферритах) М. достигает значит. величины (относит. удлинение l/l ~10-5—10-2). В антиферро-, пара- и диамагнетиках М. в большинстве случаев очень мала (10-6—10-7). Обратное по отношению к М. явление — изменение намагниченности ферромагн. образца при деформации — наз. магнитоупругим эффектом или Виллари эффектом.
В теории магнетизма М. рассматривают как результат проявления осн. типов вз-ствий в ферромагн. телах: электрического обменного вз-ствия и магн. вз-ствия (см. Ферромагнетизм), В соответствии с этим возможны два вида различных по природе магнитострикц. деформаций тел (их крист. решётки): за счёт изменения магн. сил (диполь-дипольных и спин-орбитальных) и за счёт изменения обменных сил.
При намагничивании ферро- и ферримагнетиков магнитные силы действуют в интервале от нулевого поля до поля напряжённостью Hs, в к-ром образец достигает техн. магн. насыщения Js. Намагничивание в этом интервале полей обусловлено процессами смещения границ между доменами и поворота магн. моментов доменов по полю. Оба эти процесса изменяют энергетич. состояние крист. решётки, что проявляется в изменении равновесных расстояний между
384
ее узлами. В результате атомы смещаются, происходит деформация решётки. М. этого вида зависит от направления и величины намагниченности J (т. е. анизотропна) и проявляется в осн. в изменении формы кристалла почти без изменения его объёма (линейная М.). Для расчёта линейной М. существуют феноменологич. ф-лы. Так, М. ферромагн. кристаллов кубич. симметрии, намагниченных до насыщения, рассчитывается по ф-ле:

где si, sj и i, j — направляющие косинусы вектора Js и направления измерения (относительно рёбер куба), a1 и a2 — константы анизотропии М., численно равные:

где (l//l)[100] и (tl/l)[111] — максимальные линейные М. соотв. в направлении ребра и диагонали ячейки, кристалла; их называют магнитострикц. постоянными. Величину s=(l/l)s наз. М. насыщения.
М., обусловленная обменными силами, в ферромагнетиках наблюдается в области намагничивания выше техн. насыщения, где магн. моменты доменов полностью ориентированы в направлении поля и происходит только рост абс. величины J (парапроцесс). М. за счёт обменных сил в кубич. кристаллах изотропна, т. е. проявляется в изменении объёма тела. В гексагональных кристаллах (напр., в Gd, Tb и др. редкозем. металлах) эта М. анизотропна. М. за счёт парапроцесса в большинстве ферромагнетиков при комнатных темп-рах мала, она мала и вблизи точки Кюри, где парапроцесс почти полностью определяет ферромагн. св-ва в-ва. Однако в нек-рых сплавах с малым коафф. теплового расширения (инварных магн. сплавах) М. велика [в магн. полях ~ 8•104 А/м (103 Э) отношение V/V~10-5]. Значительная М. при парапроцессе характерна также для ферритов и редкозем. металлов и сплавов при разрушении ни создании в них магн. полем неколлинеарных магнитных структур.
М. относится к т, н. чётным магн. эффектам, т. к. она не зависит от знака магн. поля. Наиболее исследована М. в поликрист. ферромагнетиках. Обычно измеряется относит. удлинение образца в направлении ноля H (п р о д о л ь н а я М.) или перпендикулярно направлению поля (п о п е р е ч н а я М.). Для металлов и большинства сплавов продольная и поперечная М. в области полей техн. намагничивания имеют разные знаки, причём величина поперечной М. меньше, чем продольной, а в области парапроцесса эти величины имеют одинаковый знак (рис. 1). Для большинства ферритов как продольная, так и поперечная М. отрицательны. У Fe (рис. 2) продольная М. в слабом магн. поле положительна (удлинение тела), а в более сильном поле отрицательна (укорочение тела). Для Ni при всех значениях поля продольная М. отрицательна.

Рис. 1. Продольная (I) и поперечная (II) магнитострикция сплава Ni (36%) — Fe (64%). в слабых полях они имеют разные знаки, в сильных — при парапроцессе — одинаковый знак (здесь магнитострикция носит объёмный хар-р).

Рис. 2. Зависимость продольной магнитострикции ряда поликрист. металлов, сплавов и соединений от напряжённости магн. поля.
Большинство сплавов Fe — Ni, Fe — Со, Fe — Pt и др. имеют положительную продольную М.: l/l ~(1—10)•10-6. Значительной продольной М. обладают сплавы Fe — Pt, Fe — Pd, Fe — Co, Mn — Sb, Mn — Cu — Bi, Fe — Rh. Среди ферритов наибольшая М. у CoFe2O4: l/l~ (2—25)•10-4. Рекордно высока М. у нек-рых редкозем. металлов, их сплавов и соединений: у Tb и Dy, TbFe2 и DyFe2, ферритов-гранатов (напр., Tb3Fe5O12) l/l ~10-3—10-2 (в зависимости от величины приложенного поля, при низких темп-pax). М. примерно такого же порядка обнаружена у ряда соединений урана (U3As4, U3P4 и др.). Величина, знак и графич. ход зависимости М. от напряжённости поля и намагниченности зависят от структурных особенностей образца (кристаллографич. текстуры, примесей посторонних элементов, термич. и холодной обработки). М. в области техн. намагничивания обнаруживает явление гистерезиса (рис. 3). Исследование М., особенно в области техн. намагничивания, помогает в изысканиях новых магнитных материалов как с высокой М. (см. Магнитострикционные материалы), так и с низкой [напр., отмечено, что высокая магн. проницаемость сплавов Fe — Ni типа пермаллоя связана с тем, что в них мала М. (наряду с малым значением константы магнитной анизотропии)].
М. влияет на тепловое расширение ферро-, ферри- и антиферромагнетиков, т. к. действие обменных (а в общем случае и магнитных) сил проявляется не только в магн. поле, но также и при нагревании тел в отсутствии поля (т е р м о с т р и к ц и я). Изменение объёма тел вследствие термострикции особенно значительно

Рис. 3. Магнитострикц. гистерезис железа.
вблизи точек магнитных фазовых переходов (точек Кюри и Нееля, при темп-ре перехода коллинеарной магн. структуры в неколлинеарную и др.). Наложение этих изменений объёма на обычное тепловое расширение иногда приводит к аномально малому значению коэфф. теплового расширения у нек-рых материалов, напр. у сплавов типа инвар (36% Ni, 64% Fe).
Большие аномалии модулей упругости и внутр. трения, также наблюдаемые в ферро-, ферри- и антиферромагнетиках в окрестности точек Кюри и Нееля и др. магн. фазовых переходов, обязаны влиянию М., возникающей при нагреве. Кроме того, при воздействии на ферро- и ферри-магн. тела упругих напряжений в них даже при отсутствии внеш. магн. поля происходит перераспределение магн. моментов доменов (в общем случае изменяется и абс. величина самопроизвольной намагниченности домена). Эти процессы сопровождаются дополнит. деформацией тела магнитострикц. природы — механострикцией. В непосредств. связи с механострикцией находится явление изменения под влиянием магн. поля модуля упругости ферромагн. металлов (E-эффект).
Для измерения М. наибольшее распространение получили установки, работающие по принципу механооптич. рычага, позволяющие наблюдать относит. изменения длины образца ~10-6. Ещё большую чувствительность дают радиотехн. и пнтерференц. методы. Получил распространение также метод проволочных датчиков, в к-ром на образец наклеивают проволочку, включённую в одно из плеч моста измерительного. Изменение длины
385
проволочки и её электрич. сопротивления при магнитострикц. изменении размеров образца с высокой точностью фиксируют электроизмерит. прибором. На явлении М. основано действие магнитострикц. преобразователей (датчиков) и реле, излучателей и приёмников ультразвука, фильтров и стабилизаторов частоты в радиотехн. устройствах, магнитострикц. линий задержки в акустике и т. д.
• Вонсовский С. В., Магнетизм, М., 1971; Белов К. П., Упругие, тепловые и электрические явления в ферромагнетиках, 2 изд., М., 1957; Б о з о р т Р., Ферромагнетизм, пер. с англ., М., 1956; Редкоземельные ферромагнетики и антиферромагнетики, М., 1965; Белов К. П., Редкоземельные магнетики и их применение, М., 1980.
К. П. Белов.
МАГНИТОСФЕРА, область околоземного пр-ва, физ. св-ва, размеры и форма к-рой определяются магн. полем Земли и его вз-ствием с потоками заряж. ч-ц от Солнца (солнечным ветром). М. несферична, она сильно вытянута в сторону, противоположную направлению на Солнце. С дневной стороны поток плазмы солн. ветра сжимает геомагн. поле (искажая его дипольный характер), на ночной стороне силовые линии магн. поля вытягиваются в протяжённый магн. хвост (рис.). Линии геомагн. поля, расположенные выше плоскости эклектики, направлены к Солнцу, ниже — от Солнца (согласно расположению магн. полюсов Земли). Диаметр хвоста составляет ~40Rзем (земных радиусов). Поля противоположных направлений в магн. хвосте разделяет токовый слой. Внутри токового слоя напряжённость
Строение земной магнитосферы в плоскости, проходящей через магн. полюсы Земли и линию Земля — Солнце.
поля близка к нулю, здесь давление полей разл. направлений уравновешивается давлением горячей плазмы, поэтому часто говорят, что противоположно направленные поля в геомагн. хвосте разделены нейтр. слоем. Давление магн. поля уравновешивается давлением плазмы и вдоль всей границы М. Границу М. при грубом рассмотрении можно считать непрозрачной для солн. ветра. На дневной стороне граница М.— магнитопауза — проходит на расстоянии ~10rзем. Напряжённость поля на границе зависит от параметров солн. ветра и обычно составляет неск. десятков гамм. Сверхзвук. поток солн. плазмы при обтекании М. вызывает формирование
бесстолкновительной ударной волны. Все линии геомагн. поля в М. можно разделить на два классах линии, близкие к линиям магн. диполя, и линии, уходящие в хвост М. В пр-ве эти два класса линий разделены областями, к-рые наз. полярными овалами (северным и южным). Топология поля в районе овалов такова, что здесь можно говорить о существовании магн. щели, в к-рую проникают ч-цы солн. ветра. Особенно эффективно ч-цы проникают в щель вблизи полуденного меридиана, эту область часто называют полярным каспом. Прорвавшиеся в М. ч-цы вызывают полярные сияния, однако процессы в полярных овалах чрезвычайно сложны, и происходящие там явления нельзя рассматривать как результат только прямого прорыва ч-ц солн. ветра. Внутр. часть М., расположенную в пределах диполеподобного геомагн. поля (примерно до ЗRзем), называют плазмосферой. Концентрация ч-ц «холодной» плазмы в плазмосфере составляет ~104 см-3; ч-цы плазмосферы участвуют в суточном вращении Земли.

Концентрация ч-ц во внеш. части М. на 2—3 порядка ниже, чем в плазмосфере; движение ч-ц плазмы здесь определяется электрич. полями, возбуждаемыми солн. ветром. Общая картина движений (конвекции) ч-ц во внеш. частях М. сильно зависит от величины и направления магн. поля в межпланетной среде.
Во внутр. областях М. магн. поле удерживает, как в магн. ловушке, потоки быстрых ч-ц с энергией в сотни и более кэВ. Эти ч-цы образуют радиационные пояса Земли. Резкое возрастание плотности энергии в солн. ветре приводит к магнитосферным бурям (усилению полярных сияний, возрастанию потоков ч-ц в радиац. поясах, искажению магн. поля Земли). Бури часто объясняют быстрым выделением энергии, запасённой в полях хвостовой части М. Альтернативным объяснением явл. представление о магнитосферной динамо-генерации эдс на границе М.
Исследования при помощи косм. аппаратов показали, что М. существует и у нек-рых др. планет. М. Меркурия напоминает М. Земли, но магн. поле Меркурия значительно слабее. М. Юпитера — самая мощная среди М. планет. Она простирается до 100RЮ. Большие размеры М. и высокая скорость вращения Юпитера приводят к заметному влиянию на М. центробежных сил — М. Юпитера сплющена. На её границе напряжённость магн. поля ~6. Обширной М. окружена планета Сатурн. Магн. поле Венеры определяется в осн. токами униполярной индукции, возникающими при взаимодействии солн. ветра с ионосферой. Здесь, как и у комет, можно говорить о наведённой М.
• А к а с о ф у С. И., Ч е п м е н С., Солнечно-земная физика, пер. с англ., ч. 1—2, М., 1974—75; X е с с В. Н., Радиационный пояс и магнитосфера, М., 1972; R о е d e r e r J. G., Global problems in magneto-spheric plasma physics and prospects for their solution, «Space sci. rev.», 1977, v. 21, № 1, p. 23—71.
И. М. Подгорный.