Магазины электрических величин
Вид материала | Документы |
- Рабочей программы дисциплины Электроэнергетические системы и сети по направлению подготовки, 21.71kb.
- Отчет по лабораторной работе должен содержать: наименование работы и номер, схемы, 365.83kb.
- Экзаменационные вопросы по курсу «Электротехника и электроника», 23.91kb.
- Бизнес-план магазина товаров для детей Содержание, 138.19kb.
- 1. Основные понятия и обозначения электрических величин и элементов электрических цепей., 277.03kb.
- Цифровой вольтметр щ-304, 137.06kb.
- Телемеханики, 26.01kb.
- Отдел метрологического обеспечения измерений электрических величин, 42.58kb.
- Курсовая работа по курсу «основы физических измерений», 226.86kb.
- Теория электрических цепей (часть, 63kb.
МАКСВЕЛЛА УРАВНЕНИЯ, фундаментальные ур-ния классич. макроскопич. электродинамики, описывающие эл.-магн. явления в любой среде (и в вакууме). Сформулированы в 60-х гг. 19 в. Дж. Максвеллом на основе обобщения эмпирич. законов электрич. и магн. явлений и развития идеи англ. учёного М. Фарадея о том, что вз-ствия между электрически заряж. телами осуществляются посредством эл.-магн. поля. Совр. форма М. у. дана нем. физиком Г. Герцем и англ. физиком О. Хевисайдом.
М. у. связывают величины, характеризующие эл.-магн. поле, с его источниками, т. е. с распределением в пр-ве электрич. зарядов и токов. В вакууме эл.-магн. поле характеризуется напряжённостью электрич. поля Е и магн. индукцией В — векторными величи-
389
нами, зависящими от пространств. координат и времени. Эти величины определяют силы, действующие со стороны поля на заряды и токи, распределение к-рых в пр-ве задаётся плотностью заряда (величиной заряда в ед. объёма) и плотностью электрического тока j. Для описания эл.-магн. процессов в матер. среде, кроме Е и В, вводятся вспомогат. векторные величины, зависящие от состояния и св-в среды: электрич. индукция D и напряжённость магн. поля Н.
М. у. позволяют определить осн. хар-ки поля (E, В, D и Н) в каждой точке пр-ва в любой момент времени, если известны источники поля j и как ф-ции координат и времени. М. у. могут быть записаны в интегр. или дифф. форме (ниже они приводятся в Гаусса системе единиц).
М. у. в и н т е г р а л ь н о й ф о р м е определяют не векторы E, В, D и Н в отд. точках пр-ва, а нек-рые интегр. величины, зависящие от распределения этих хар-к поля: циркуляцию векторов Е и Н вдоль произвольных замкнутых контуров и потоки векторов D и B через произвольные замкнутые поверхности.
Первое М. у. явл. обобщением на перем. поля эмпирического Био — Савара закона о возбуждении магн. поля электрич. токами. Максвелл высказал гипотезу, что магн. поле порождается не только токами, текущими в проводнике, но и перем. электрич. полями в диэлектриках или вакууме. Величина, пропорц. скорости изменения электрич. поля во времени, была названа Максвеллом током смещения, он возбуждает магн. поле по тому же закону, что и ток проводимости. Полный ток, равный сумме тока смещения и тока проводимости, всегда явл. замкнутым. Первое М. у. имеет вид:

т. е. циркуляция вектора магн. напряжённости вдоль замкнутого контура L (сумма скалярных произведений вектора Н в данной точке контура на бесконечно малый отрезок dl контура) определяется полным током через произвольную поверхность S, ограниченную данным контуром. Здесь jn — проекции плотности тока проводимости j на нормаль к бесконечно малой площадке ds, являющейся частью поверхности S; (1/4)(дDn/дt) — проекция плотности тока смещения на ту же нормаль; с—3•1010см/с — постоянная, равная скорости распространения эл.-магн. вз-ствий (скорость света) в вакууме.
Второе М. у. является матем. формулировкой закона электромагнитной индукции Фарадея и записывается в виде:

т. е. циркуляция вектора напряженности электрич. поля вдоль замкнутого контура L (эдс индукции) определяется скоростью изменения потока вектора магн. индукции через поверхность S, ограниченную данным контуром. Здесь Bn — проекция на нормаль к площадке ds вектора магн. индукции В; знак «-» соответствует Ленца правилу для направления индукц. тока.
Третье М. у. выражает опытные данные об отсутствии магн. зарядов, аналогичных электрическим (магн. поле порождается только электрич. токами):

т. е. поток вектора магн. индукции через произвольную замкнутую поверхность S равен нулю.
Четвёртое М. у. (обычно наз. Гаусса теоремой) представляет собой обобщение закона вз-ствия неподвижных электрич. зарядов — Кулона закона:

т. е. поток вектора электрич. индукции через произвольную замкнутую поверхность S определяется электрич. зарядом, находящимся внутри этой поверхности (в объёме V, ограниченном поверхностью S).
Если считать, что векторы эл.-магн. поля (Е, В, D и Н) явл. непрерывными ф-циями координат, то, рассматривая циркуляцию Н и Е по бесконечно малым контурам и потоки векторов В и D через поверхности, ограничивающие бесконечно малые объёмы, можно от интегральных М. у- (1, а—г) перейти к системе дифференциальных М. у., характеризующих поле в каждой точке пр-ва:

Физ. смысл ур-ний (2) тот же, что ур-ний (1).
М. у. в форме (1) или (2) не образуют полной замкнутой системы, позволяющей рассчитывать эл.-магн. процессы при наличии матер. среды. Их необходимо дополнить соотношениями, связывающими векторы Е, Н, D, В и j, к-рые не являются независимыми. Связь между ними определяется св-вами среды и её состоянием, причём D и 3 выражаются через Е, а В — через Н:
D=D(E), B=B(H),j=j(E). (3)
Эти ур-ния наз. ур-ниями состояния или материальными ур-ниями; они описывают эл.-магн.
св-ва среды и для каждой конкретной среды имеют определ. форму. В вакууме DЕ и ВН. Совокупность ур-ний поля (2) и ур-ний состояния (3) образуют полную систему ур-ний.
Макроскопич. М. у. описывают среду феноменологически, не рассматривая сложного механизма вз-ствия эл.-магн. поля с заряж. ч-цами среды. М. у. могут быть получены из Лоренца — Максвелла уравнений для микроскопич. полей и определ. представлений о строении в-ва путём усреднения микрополей по малым пространственно-временным интервалам. Таким способом получаются как осн. ур-ния поля (2), так и конкретная форма ур-ний состояния (3), причём вид ур-ний поля не зависит от св-в среды.
Ур-ния состояния в общем случае очень сложны, т. к. векторы D, В и j в данной точке пр-ва в данный момент времени могут зависеть от полей E и H и If во всех точках среды во все предшествующие моменты времени. В нек-рых средах векторы D и В могут быть отличными от нуля при Е и Н равных нулю (сегнетоэлектрики и ферромагнетики). Однако для большинства изотропных сред, вплоть до весьма значит. полей, ур-ния состояния имеют простую линейную форму:
D=E, B=H, j=E+jстр. (4)
Здесь (х, у, z) — диэлектрическая проницаемость, a (х, у, z) — магнитная проницаемость среды (для вакуума в системе СГС ==1), величина (х, у, z) наз. удельной электропроводностью, j'стр — плотность т. н. сторонних токов, т. е. токов, поддерживаемых любыми силами, кроме см электрич. поля (напр., маги. полем, диффузией). В феноменологич. теории Максвелла макроскопич. характеристики эл.-магн. св-в среды , и должны быть найдены экспериментально. В микроскопич. теории Лоренца — Максвелла они могут быть рассчитаны.
Проницаемости и фактически определяют тот вклад в эл.-магн. поле, к-рый вносят т. н. связанные заряды, входящие в состав электрически нейтр. атомов и молекул в-ва. При известных из опыта , и можно рассчитать эл.-магн. поле в среде, не решая трудную вспомогат. задачу о распределении связанных зарядов и соответствующих им токов в в-ве. Плотность заряда и плотность тока j в М. у.— это плотности свободных зарядов и токов, причём вспомогат. векторы Н и D вводятся так, чтобы циркуляция вектора Н определялась только движением свободных зарядов, а поток вектора D — плотностью распределения этих зарядов в пр-ве.
Если эл.-магн. поле рассматривается в двух граничащих средах, то на поверхности раздела векторы поля могут претерпевать разрывы (скачки); в этом случае ур-ния (2) должны быть дополнены граничными условиями:
390

Здесь jпов и пов — плотности поверхностных тока и заряда, квадратные и круглые скобки — соотв. векторные и скалярные произведения векторов, n — единичный вектор нормали к поверхности раздела и направления от первой среды ко второй (12), а индексы относятся к разным сторонам границы раздела.
Осн. ур-ния для поля (2) линейны, ур-ния же состояния (3) в общем случае нелинейны. Обычно нелинейные эффекты обнаруживаются в достаточно сильных полях. В линейных средах [удовлетворяющих соотношениям (4)], и в частности в вакууме, М. у. линейны, так что для них справедлив суперпозиции принцип: при наложении полей они не оказывают влияния друг на друга.
Из М. у. вытекает ряд законов сохранения. В частности, из ур-ний (1, а) и (1, г) можно получить т. н. ур-ние непрерывности:

представляющее собой закон сохранения электрич. заряда: полный ток, протекающий за ед. времени через любую замкнутую поверхность S, равен изменению заряда внутри объёма V, ограниченного поверхностью S. Если ток через поверхность отсутствует, то заряд в объёме V остаётся неизменным.
Из М. у. следует, что эл.-магн. поле обладает энергией и импульсом. Плотность энергии W (энергия поля в ед. объёма) равна:

Эл.-магн. энергия может перемещаться в пр-ве. Плотность потока энергии определяется т. н. вектором Пойнтинга

Направление вектора Пойнтинга перпендикулярно и E и H и совпадает с направлением распространения эл.-магн. энергии, а его величина равна энергии, переносимой в ед. времени через единичную поверхность, перпендикулярную П. Если эл.-магн. энергия не переходит в др. формы энергии, то, согласно М. у., изменение энергии в нек-ром объёме за ед. времени равно потоку эл.-магн. энергии через поверхность, ограничивающую этот объём. Если внутри объёма за счёт эл.-магн. энергии выделяется теплота, то закон сохранения энергии записывается в виде:

где Q — кол-во теплоты, выделяемой в ед. времени, Пn — проекция П на нормаль к бесконечно малой площадке ds.
Плотность импульса эл.-магн. поля g (импульс ед. объёма поля) связана с плотностью потока энергии соотношением:

Существование импульса эл.-магн. поля впервые было экспериментально обнаружено в опытах П. Н. Лебедева по измерению давления света (1899—1901).
Как видно из (7), (8) и (10), эл.-магн. поле всегда обладает энергией, а поток энергии и эл.-магн. импульс отличны от нуля лишь в случае, когда одновременно существуют и электрич. и магн. поля, причём Е и Н не параллельны друг другу.
М. у. приводят к фундам. выводу о конечности скорости распространения эл.-магн. вз-ствий. Это означает, что при изменении плотности заряда или тока, порождающих эл.-магн. поле, в нек-рой точке пр-ва на расстоянии R от них поле изменится спустя время =R/c. Вследствие конечной скорости распространения эл.-магн. вз-ствий возможно существование электромагнитных волн, частным случаем к-рых (как впервые показал Максвелл) явл. световые волны.
Эл.-магн. явления протекают одинаково во всех инерциальных системах отсчёта, т. е. удовлетворяют относительности принципу. В соответствии с этим М. у. не меняют своей формы при переходе от одной инерц. системы отсчёта к другой (релятивистски инвариантны). Выполнение принципа относительности для эл.-магн. процессов оказалось несовместимым с классич. представлениями о пр-ве и времени, потребовало пересмотра этих представлений и привело к созданию спец. относительности теории (А. Эйнштейн, 1905). Форма М. у. остаётся неизменной при переходе к новой инерц. системе отсчёта, если пространств. координаты и время, векторы поля E, Н, В и D, плотность тока j и плотность заряда изменяются в соответствии с Лоренца преобразованиями. Релятивистски инвариантная форма М. у. подчёркивает тот факт, что электрич. и магн. поля образуют единое целое.
М. у. описывают огромную область явлений. Они лежат в основе электротехники и радиотехники и играют важную роль в развитии таких актуальных направлений совр. физики, как физика плазмы и проблема управляемого термоядерного синтеза, магнитная гидродинамика, нелинейная оптика, конструирование ускорителей заряженных частиц, астрофизика и т. д. М. у. неприменимы лишь при больших частотах эл.-магн. волн, когда становятся существенными квант. эффекты, т. е. когда энергия
отд. квантов эл.-магн. ноля — фотонов — велика и в процессах участвует сравнительно небольшое число фотонов.
• Максвелл Дж. К., Избр. соч. по теории электромагнитного поля, пер. с англ., М., 1954; Т а м м И. Е., Основы теории электричества, 9 изд., М., 1976; Калашников С. Г., Электричество, 4 изд., М., 1977 (Общий курс физики); Ф е й н м а н Р., Л е й т о н Р., С э н д с М., Фейнмановские лекции по физике,[пер. с англ.], 2 изд., в. 5—
7. М., 1977; Ландау Л. Д., Л и ф ш и ц
Е. М., Теория поля, 6 изд., М., 1973 (Теоретическая физика, т. 2); их же, Электродинамика сплошных сред, М., 1959; А с т а х о в А. В., Ш и р о к о в Ю. М., Электромагнитное поле, М., 1980 (Курс физики, т. 2); С и в у х и н Д. В., Электричество, М., 1977 (Общий курс физики, т. 3); П а р с е л л Э., Электричество и магнетизм, пер. с англ., 2 изд., М., 1975 (Берклеевский курс физики, т. 2).
Г. Я. Мякишев.
МАЛЮСА ЗАКОН, зависимость интенсивности линейно поляризованного света после его прохождения через анализатор от угла а между плоскостями поляризации падающего света и анализатора (см. Поляризация света). Установлен франц. физиком Э. Л. Малюсом (Е. L. Malus) в 1810. Если I0 и I — соотв. интенсивность падающего на анализатор и выходящего из него света, то, согласно М. з., I=I0cos2. Свет с иной (не линейной) поляризацией может быть представлен в виде суммы двух линейно поляризованных составляющих, к каждой из к-рых применим М. з. По М. з. рассчитываются интенсивности проходящего света во всех поляризационных приборах. Потери на отражение, зависящие от а и не учитываемые М. з., определяются дополнительно.
МАНДЕЛЬШТАМА — БРИЛЛЮЭНА РАССЕЯНИЕ, рассеяние оптич. излучения конденсированными средами (тв. телами и жидкостями) в результате его вз-ствия с собственными упругими колебаниями этих сред. М.— Б. р. сопровождается изменением частот (длин волн), характеризующих излучение. Напр., М.— Б. р. монохроматического света в кристаллах приводит к появлению шести частотных компонент рассеянного света, в жидкостях — трёх (одна из них — неизменённой частоты).
Сравнительно сильное вз-ствие между ч-цами конденсиров. сред (в кристаллах оно связывает их в упорядоченную пространств. решётку) приводит к тому, что по всевозможным направлениям в среде распространяются упругие волны разл. частот (см. Гиперзвук). Наложение таких волн друг на друга вызывает появление флуктуации плотности среды, на к-рых и рассеивается свет (см. Рассеяние света). М.— Б. р. показывает, что световые волны взаимодействуют не только с флуктуациями плотности, но и непосредственно с упругими волнами, обычно ненаблюдаемыми по отдельности. Особенно наглядна физ. картина явления в кри-
391
сталлах. В них упругие волны одинаковой частоты, бегущие навстречу друг другу, образуют стоячие волны той же частоты, т. е. создают периодич. решётку, на к-рой происходит дифракция света; это явление аналогично дифракции света на ультразвуке. Рассеяние света стоячими волнами происходит по всем направлениям, но, вследствие интерференции света, за рассеяние в данном направлении ответственна упругая волна одной определ. частоты. Пусть на плоском фронте такой волны (рис.) рассеиваются, изменяя своё направление на угол , лучи падающего света частоты (длины волны ; =c*/, где с* — скорость света в кристалле).

Для того чтобы рассеянные лучи, интерферируя, давали максимум интенсивности в данном направлении, необходимо, чтобы оптич. разность хода СВ+ВД соседних падающих (1 и 2) и рассеянных (Г и 2') лучей была равна :
2n•sin/2=-, (1)
где =АВ — длина рассеивающей упругой (гиперзвук.) волны. Рассеяние световой волны на упругой эквивалентно модуляции света падающего пучка с частотой упругой волны. Условие (1) приводит к выражению для относит. изменения частоты рассеянного света:
/=±2v/c*•sin /2 (2)
(v — скорость упругих волн в кристалле) .
Смещение частоты света при М.—Б. р. относительно невелико, т. к. v<
Из представления о стоячих волнах, модулирующих световую волну, исходил Л. И. Мандельштам, теоретически предсказавший это рассеяние. Независимо от него те же результаты получил франц. физик Л. Бриллюэн (L. Brillouin), рассматривая рассеяние света на бегущих навстречу друг другу упругих волнах в среде. Причиной «расщепления» монохроматич. линий в этом случае оказывается Доплера эффект.
Экспериментально М.— Б. р. впервые наблюдалось Мандельштамом и
Г. С. Ландсбергом (1930). Детально его исследовал Е. Ф. Гросс. В частности, он обнаружил (1938), что М.— Б. р. в кристаллах расщепляет монохроматич. линию на шесть компонент (это объясняется тем, что скорость звука v в кристалле различна для разных направлений, вследствие чего в общем случае в нём существуют три— одна продольная и две поперечные — упругие волны одной и той же частоты, каждая из к-рых распространяется со своей v скоростью). Он же изучил М.— Б. р. в жидкостях и аморфных тв. телах (1930—32), при к-ром наряду с двумя смещёнными наблюдается и несмещённая компонента исходной частоты v. Теор. объяснение этого явления принадлежит Л. Д. Ландау и чешскому физику Г. Плачеку (1934), показавшим, что, кроме флуктуации плотности, необходимо учитывать и флуктуации температуры среды.
Создание лазеров не только улучшило возможности наблюдения М.— Б. р., но и привело к открытию т. н. вынужденного М.— Б. р. Оно обусловлено нелинейным вз-ствием интенсивной возбуждающей световой волны (первоначально слабой рассеянной волны) и упругой тепловой волны. Основой такого вз-ствия явл. эффект электрострикции, заключающийся в том, что диэлектрик в электрич. поле напряжённостью Е меняет свой объём и т. о. возникает электрострикц. давление (а следовательно, образуется упругая волна). Электрострикц. давление пропорц. Е2. В гигантском импульсе лазера напряжённость электрич. поля световой волны может достигать значений 104—108 В/см, и тогда электрострикц. давление может составить сотни тыс. атмосфер и возникнет весьма интенсивный гиперзвук. Интенсивность звук. волны, возникающей при вынужденном М.— Б. р., невелика.
Исследования М.— Б. р. в сочетании с др. методами позволяют получить ценную информацию о св-вах рассеивающей среды. Вынужденное М.— Б. р. используется для генерации мощных гиперзвук. волн в кристаллах.
• Волькенштейн М. В., Молекулярная оптика, М.—Л., 1951; Фабелинский И. Л., Молекулярное рассеяние света, М., 1965.
Я. С. Бобович.
МАНОМЕТРИЧЕСКИЙ ТЕРМОМЕТР, состоит из баллона, соединённого капилляром с пружинным манометром. Действие М. т. основано на тепловом расширении заполняющей баллон жидкости либо на температурной зависимости давления находящегося в баллоне газа или насыщенного пара. В зависимости от того, чем заполнен баллон, различают М. т. газовые (азот), жидкостные (ртуть) и конденсационные, или парожидкостные (хлористый этил и др.). М. т. применяют в кач-ве приборов техн. назначения в диапазоне темп-р от -60 до +550 °С. При большой длине капилляра (до 60 м) они
могут служить дистанционными термометрами,
• См. лит. при ст. Термометрия.
Д. И. Шаревская.