Московский государственный университет имени М. В. Ломоносова биологический факультет на правах рукописи

Вид материалаАвтореферат

Содержание


Общая характеристика работы
Установление структур
Содержание работы
Главы I, II, III.
Экспериментальная часть
Результаты исследований
5.1. Структуры тейхоевых кислот клеточных стенок видов и подвидов рода Nocardiopsis
N. dassonvillei
N. alba (сефадекс G-50, колонка 9909,5 мм; объем фракции 2 мл). Стандартные вещества: (1) –ТК Streptomyces antibioticus
N. compostа
5.2. Структуры тейхоевых кислот клеточных стенок видов рода Glycomyces
5.3. Структуры тейхоевых кислот клеточных стенок видов рода Nocardioides
5.4. Структуры анионных полимеров клеточных стенок некоторых видов рода Streptomyces
S. castelarensis
4)--D-Manp2,3NAcyA-(13)--D-GalpNAc-(1, где Acy – ацетил или L-Glu
5.5. Тейхоевая кислота и полисахарид клеточной стенки Kineosporia aurantiaca ВКМ Ас-702
Kineosporia aurantiaca
Глава VI. Тейхоевые кислоты клеточных стенок как видоспецифический маркер актиномицетов.
6.1. Структуры и набор тейхоевых кислот клеточных стенок как видоспецифические маркеры видов и подвидов рода Nocardiopsis.
N. dassonvillei
...
Полное содержание
Подобный материал:
  1   2   3   4   5   6


МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М.В. ЛОМОНОСОВА

БИОЛОГИЧЕСКИЙ ФАКУЛЬТЕТ

На правах рукописи


ТУЛЬСКАЯ


ЕЛЕНА МИХАЙЛОВНА


ТЕЙХОЕВЫЕ КИСЛОТЫ И ГЛИКОПОЛИМЕРЫ АКТИНОМИЦЕТОВ: РАЗНООБРАЗИЕ СТРУКТУР, ТАКСОНОМИЧЕСКИЕ И ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ


Специальность 03.00.07 – микробиология


АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора биологических наук


Москва, 2009 г.


Работа выполнена на кафедре микробиологии биологического факультета

Московского государственного университета имени М.В. Ломоносова


Научные консультанты: доктор биологических наук

Евтушенко Людмила Ивановна


доктор биологических наук, профессор

Нетрусов Александр Иванович


Официальные оппоненты: доктор биологических наук, профессор

Зенова Галина Михайловна.


доктор биологических наук, профессор

Эль-Регистан Галина Ивановна


доктор химических наук, профессор

Бакиновский Леон Владимирович


Ведущая организация: Институт биохимии имени А.Н. Баха РАН


Защита состоится «____» ____________ 2009 г. на заседании диссертационного совета Д.501.001. 21 при Московском государственном университете имени М.В. Ломоносова по адресу: 119991, Москва, ГСП-1, Ленинские горы, дом 1, МГУ, корп.12, биологический факультет, ауд. М-1.


С диссертацией можно ознакомиться в библиотеке биологического факультета МГУ.


Автореферат разослан «____» _____________ 2009 г.


Ученый секретарь

диссертационного совета,

кандидат биологических наук Пискункова Н.Ф.


ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ


Состояние вопроса и актуальность проблемы.

На поверхности бактериальной клетки экспонированы углеводные остатки, входящие в состав биополимеров клеточной стенки (Наумова и Шашков, 1997; Shibaev, 1987; Sutcliffe, 1994; Weidenmaier and Peschel, 2008). Эти полимеры часто имеют весьма сложную структуру и играют важную роль в жизнедеятельности микроорганизма. Нейтральные и кислые полисахариды, тейхуроновые кислоты, у которых углеводные остатки соединены между собой ковалентными связями, являются типичными представителями гликополимеров клеточных стенок. Моносахаридные остатки присутствуют в основном гликополимере бактериальной клеточной стенки – пептидогликане, а также в уникальных соединениях, характерных только для клеточных стенок грамположительных бактерий – тейхоевых кислотах и сахар-1-фосфатных полимерах, мономерные звенья которых объединены фосфодиэфирными связями.

Исследование структур тейхоевых кислот и гликополимеров клеточных стенок важно как в фундаментальном, так и научно-прикладном аспектах. Выявление и описание новых структур представляет интерес в связи с оценкой разнообразия биополимеров, пониманием их функций в микробной клетке и путей их биосинтеза, а также распространения у различных микроорганизмов в связи с вопросами эволюции. Исследование структур поверхностных полимеров способствует также пониманию механизмов взаимодействия бактерий внутри микробного сообщества и с внешней средой, в том числе с высшими организмами. Весьма актуальны исследования этих биополимеров микроорганизмов в медицинском аспекте. Их углеводная составляющая отвечает за биологическое распознавание поступающих извне веществ (например, лекарств), а также определяет самые разнообразные процессы клеточного узнавания, в том числе, имеющих ключевое значение при развитии многих заболеваний человека и животных, включая бактериальные и вирусные инфекции, рак, воспаления и др. (Дмитриева и др., 2007; Нифантьев, 2008; Weidenmaier and Peschel, 2008). Одним из направлений исследований тейхоевых кислот и гликополимеров клеточных стенок бактерий, получившим развитие в последние годы, является так называемое “хемотаксономическое” – изучение распространения и структур полимеров в связи с фундаментальными задачами развития естественной системы микроорганизмов и решения практичесих задач идентификации.

К началу наших исследований среди вышеупомянутых полимеров наиболее изученными были тейхоевые кислоты. С момента их открытия у лактобацилл в 50-е годы ХХ века в лаборатории профессора Джеймса Бэддили (Baddiley and Matias, 1954; Baddiley et al., 1956) проводились работы, связанные с изучением структурного разнообразия, путей биосинтеза и функций тейхоевых кислот у бактерий. Эти работы в основном были выполнены на представителях родов Bacillus*, Lactobacillus и Staphylococcus (Baddiley et al., 1962 a,b; 1972; Karamata et al., 1972; 1987; Archibald, 1974; Doyle et al., 1975; Hancock and Baddiley, 1976; Rodgers and Taylor, 1978; Yokoyama et al., 1987; Mauël et al., 1989 и др.). Было также обнаружено, что организмы разных видов содержат различные по структуре тейхоевые кислоты, (Baddiley et al., 1961; Davison and Baddiley, 1964; Archibald et al., 1968; Baird-Parker, 1970), и была высказана идея о возможности использования данных полимеров в таксономических целях (Fiedler et al., 1981; Schleifer and Stackebrandt, 1983).

________________________

*- латинские наименования родов, видов и подвидов, а также наименования таксонов более высокого порядка (семейство, порядок, класс и т.д.) приведены согласно правилам журнала «Микробиология», 2008, Т. 77, № 4, стр. 574

Огромный вклад в изучение разнообразия структур и распространения тейхоевых кислот у представителей различных таксонов порядка Actinomycetales внесли приоритетные работы Заслуженного деятеля науки Российской Федерации, профессора Ирины Борисовны Наумовой с сотрудниками (Наумова, 1964; 1973; 1979; Евтушенко и др., 1984; Наумова и Шашков, 1997; Naumova et al., 1980; Naumova, 1988; Naumova et al., 2001), ведущиеся в течение многих лет на кафедре микробиологии биологического факультета МГУ в сотрудничестве со специалистами Института органической химии им. Н.Д.Зелинского РАН и Института биохимии и физиологии им. Г.К. Скрябина РАН (отдел «Всероссийская коллекция микроорганизмов»).

Представители порядка Actinomycetales (актиномицеты) выделяются среди других прокариот размерами (до 9 млн. п.о.) и организацией генома, особенностями фенотипа, в т.ч., разнообразием морфологии и химических компонентов клетки и клеточной стенки. Актиномицеты также превосходят другие известные группы бактерий по способности синтезировать биологически активные соединения. Они являются продуцентами свыше половины из более 10000 антибиотиков и других соединений, известных к настоящему времени (Грачева, 2003; Goodfellow et al., 1988; Anderson and Wellington, 2001; Watve et al., 2001). Все вышесказанное способствовало повышенному интересу к этой группе микроорганизмов со стороны различных специалистов, прежде всего биотехнологов, микробиологов-систематиков и молекулярных биологов, что, в свою очередь, определило более успешное развитие системы актинобактерий по сравнению с другими группами пркариот.

Создание филогенетической схемы прокариот, и актинобактерий в частности, стало возможным благодаря внедрению в микробиологию молекулярно-генетических методов и определению нуклеотидных последовательностей генов 16S рРНК. Филогенетические древа, однако, не могут быть использованы непосредственно для построения иерархической системы (Калакуцкий, 2006; Stackebrandt and Swings, 2005). Выделение новых и ревизия ранее описанных таксонов осуществляется с учетом разносторонних согласующихся данных филогенетического и фенотипического характера (принцип полифазной таксономии). Информация о фенотипе особенно важна для обоснования выделения новых таксонов родового и видового уровней и уточнения границ между таксонами.

Изучение хемотаксономических признаков (тип клеточной стенки, тип пептидогликана, состав менахинонов, жирных кислот фосфолипидов) сыграло ключевую роль в развитии системы классификации актиномицетов в «домолекулярную эру». Отличия организмов по хемотаксономическим признакам зачастую являются определяющими при обосновании выделения нового рода или вида актиномицетов и в настоящее время. Вместе с тем, многие полимеры и крупные молекулы клетки не изучены или слабо исследованы в таксономическом аспекте. В этой связи актуальны работы, направленные на поиск и оценку таксономической значимости новых биомолекул и их структурных компонентов – особенно в связи с выделением из природной среды массивов новых микроорганизмов, обособляющихся от изветсных таксонов на уровне генотипа, но неотличимых от них по традиционно используемым в систематике актиномицетов фенотипическим, в т.ч., хемотаксономическим, признакам.

К настоящему моменту определены структуры тейхоевых кислот и показана возможность использования этих полимеров и их структурных компонентов в качестве хемотаксономических маркеров видов ряда родов актиномицетов, например, Agromyces (Гнилозуб, 1994), Actinomadura, Nonomurea, Brevibacterium (Потехина, 2005). Эти и другие работы продемонстрировали также огромное структурное разнообразие тейхоевых кислот и гликополимеров в этой группе бактерий и перспективность дальнейших исследований в данном направлении.


Цель и задачи исследования.

Цель настоящего исследования – изучение распространения и разнообразия тейхоевых кислот и гликополимеров клеточных стенок у представителей порядка Actinomycetales и оценка коррелятивных связей между наличием и структурой вышеназванных полимеров, с одной стороны, и таксономическим положением и свойствами организмов, с другой.

Среди основных задач исследования можно выделить следующие:

1. Изучение распространения тейхоевых кислот и других гликополимеров у представителей различных родов актиномицетов, относящихся к 12-ти семействам, 9-ти подпорядкам порядка Actinomycetales (более 100 штаммов).

2. Установление структур тейхоевых кислот и других гликополимеров клеточных стенок исследуемых актиномицетов – представителей некоторых видов родов Nocardiopsis (29 штаммов); Glycomyces (4 штамма); Nocardioides (15 штаммов); Streptomyces (14 штаммов), а также Kineosporia aurantiaca.

3. Анализ полученных результатов и имеющихся в литературе сведений и оценка возможности использования вышеназванных полимеров и их структурных компонентов в качестве химических маркеров таксонов.

4. Выяснение взаимосвязи между структурой тейхоевых кислот и гликополимеров клеточных стенок стрептомицетов-возбудителей парши обыкновенной картофеля и корнеплодов и их патогенностью.


Научная новизна работы.

Впервые изучено распространение тейхоевых кислот и других гликополимеров в клеточных стенках, а также моносахаридный состав последних у более 100 штаммов, представителей различных родов актиномицетов, относящихся к 12-ти семействам 9-ти подпорядкам порядка Actinomycetales. Впервые найдены тейхоевые кислоты и другие гликополимеры клеточных стенок и установлены структуры полимеров у 63 (из 100) штаммов актиномицетов, относящихся к 28 видам, 5-ти родам 5-ти семейств 5-ти подпорядков порядка Actinomycetales. Обнаружено и описано 15 новых структур упомянутых биополимеров, среди них 11 тейхоевых кислот, 2 кислых полисахарида – полимер и олигомер Kdn (3-дезокси-D-глицеро-D-галакто-нон-2-улопиранозоновая кислота), тейхуроновая кислота и нейтральный полисахарид. Впервые показана специфичность состава и строения тейхоевых кислот для видов родов Nocardiopsis, Nocardioides, Glycomyces и Streptomyces, что имеет важное значение для усовершенствования системы классификации исследованных групп бактерий. Предложен новый перспективный подход к ревизии таксономической структуры наиболее многочисленного по видовому составу рода Streptomyces, а именно, использование признака “набор и структура тейхоевых кислот и других гликополимеров клеточной стенки” как критерия границ близких видов. В соответствии с отличиями по составу тейхоевых кислот клеточной стенки и с другими фенотипическими признаками, а также с обособленностью на филогенетическом уровне (анализ 16S рРНК), предложен новый вид Nocardioides prauseri sp. nov. и переописаны виды Nocardioides luteus и Nocardioides albus. Впервые показано, что клеточные стенки стрептомицетов, вызывающих паршу обыкновенную у картофеля и корнеплодов, содержат в клеточных стенках более двух анионных полимеров различных по структуре, среди которых – полимер/олигомер Kdn. Эти полимеры, наряду с фитотоксином такстомином и гидролитическими ферментами, по всей вероятности, могут считаться факторами патогенности, обусловливая специфическую адгезию фитопатогена к растению-хозяину на первых этапах развития инфекции. Выявлен ряд новых фитопатогенных актиномицетов рода Streptomyces, филогенетически и фенотипически отличных от ранее известных возбудителей парши обыкновенной картофеля и корнеплодов.


Практическое значение работы.

Полученные в результате проведенных исследований данные о химическом составе и структурных особенностях тейхоевых кислот и других гликополимеров клеточных стенок фитопатогенных стрептомицетов могут служить основой для будущих исследований молекулярных механизмов взаимодействия фитопатогенов и растения-хозяина и разработки новых методов борьбы с возбудителями заболеваний растений. Полученные данные могут быть использованы для создания более совершенной системы идентификации фитопатогенов. На большом фактическом материале убедительно показано, что признак «наличие/отсутствие тейхоевых кислот и других гликополимеров клеточной стенки», а также таксономическая специфичность ряда структурных компонентов, выявляемых методами хроматографии, могут быть успешно применены в повседневной микробиологической практике при идентификации микроорганизмов исследованных групп и решении вопроса о границах таксонов. Подкомитетом по систематике подпорядка Micrococcineae Международного комитета по систематике прокариот рекомендовано определять вышеназванные характеристики при описании новых родов и видов соответствующих групп актинобактерий (Shumann et al., 2009).

Значительно пополнены базы данных спектров ЯМР тейхоевых кислот и других гликополимеров бактериальных клеточных стенок, что внесло определённый вклад в гликологию, химическую микробиологию и может быть использовано при анализе структур близких полимеров в биохимической практике.

Полученные данные о структуре, разнообразии и распространении тейхоевых кислот и других гликополимеров в клеточных стенках представителей порядка Actinomycetales востребованы и цитируются в ведущих современных обзорах и монографиях (Lazarevic et al., 2002; Seltmann and Holst, 2002; Neuhaus and Baddiley, 2003; Weidenmaier and Peschel, 2008) и авторитетном международном руководстве по микробиологии – “The Procaryotes” (Kroppenstedt and Evtushenko, 2006). Кроме того, эти данные могут быть включены в курсы по биохимии и микробиологии на биологических факультетах высших учебных заведений.


Основные защищаемые положения диссертации.

● тейхоевые кислоты и гликополимеры широко распространены в клеточных стенках представителей прядка Actinomycetales, однако доминируют тейхоевые кислоты;

● тейхоевые кислоты и гликополимеры клеточных стенок представителей порядка Actinomycetales проявляют чрезвычайно широкое структурное разнообразие;

● набор и структура тейхоевых кислот и гликополимеров клеточных стенок представителей порядка Actinomycetales являются таксономически значимой фенотипической характеристикой таксонов разных уровней (от подпорядка до вида);

● клеточные стенки фитопатогенных стрептомицетов характеризуются ярко выраженными анионными свойствами, которые обеспечены наличием в них комплекса кислых полимеров гетерогенного состава: тейхоевыми и тейхуроновыми кислотами с пировиноградной или глутаминовой кислотой в качестве дополнительного кислого компонента, кислыми поли/олигосахаридами;

● выявление новых структур гликополимеров клеточной стенки может служить не только маркером новых видов или подвидов актиномицетов, но и указывать на неизвестные до сего времени экологические функции изучаемых организмов.


Апробация работы. Материалы диссертации были представлены на Всесоюзной конференция «Регуляция микробного метаболизма» (Пущино, 1989); Международных симпозиумах по биологии актиномицетов (Madison, 1991; Москва, 1994); Всероссийской конференции «Биосинтез и деградация микробных полимеров. Фундаментальные и прикладные аспекты» (Пущино, 1995); Международной конференции «Микробное разнообразие» (Пермь, 1996); Втором съезде Биохимического общества Российской АН, Москва, 1997); Международном симпозиуме «Современные проблемы биохимии микроорганизмов и биотехнологии» (Пущино, 2000); Втором Германо-Польско-Российском съезде по углеводам бактерий (Москва, 2002); Первой Всероссийской конференции по иммунитету растений к болезням и вредителям (Санкт-Петербург, 2002); Первом конгрессе FEMS Европейских микробиологов (Ljubljana, 2003); II Московском международном конгрессе по биотехнологии (Москва, 2003); III Всероссийской школе-конференции «Химия и биохимия углеводов» (Саратов, 2004); Всероссийском симпозиуме «Биотехнология микробов», (Москва, 2004); Всероссийском симпозиуме с международным участием «Автотрофные микроорганизмы» (Москва, 2005); Международном конгрессе коллекций культур микроорганизмов (Göslar, 2007); IV съезде Российского общества биохимиков и молекулярных биологов (Новосибирск, 2008).


Публикации. По материалам диссертации опубликовано 45 работ, из них обзор и 24 экспериментальные статьи в рекомендуемых ВАК’ом изданиях; тезисы 20 докладов.


Структура и объем работы. Диссертация изложена на 350 страницах машинописного текста и состоит из введения, 9-ти глав, включающих материалы литературных источников, касающиеся темы данной работы (3 главы обзора литературы), краткой характеристики объектов и методов исследований (одна глава), изложения результатов собственных исследований (4 главы), а также главы, посвященной обсуждению полученных результатов. Кроме того, имеется общее заключение и выводы. Работа содержит 64 таблицы, 54 рисунка. Список цитируемой литературы содержит 720 ссылок. В Приложении приведён полный список исследованных штаммов актиномицетов с указанием обнаруженных моносахаридов, а также наличия (отсутствия) тейхоевых кислот в их клеточных стенках; таблицы баз данных по ЯМР-спектрам найденных тейхоевых кислот и других гликополимеров.


СОДЕРЖАНИЕ РАБОТЫ


Обзор литературы


Тейхоевые кислоты и другие гликополимеры клеточных стенок грамположительных бактерий: структурное разнообразие, распространение и некоторые функции, экологические аспекты.


Главы I, II, III. В литературном обзоре представлены сведения, касающиеся строения бактериальной клеточной стенки; разнообразия структурных вариаций, распространения и некоторых функций тейхоевых кислот и других гликополимеров клеточных стенок грамположительных бактерий. Особое внимание уделено названным полимерам клеточных стенок представителей порядка Actinomycetales. Приведены сведения, касающиеся современной классификации актиномицетов. Отмечена особая значимость хемотаксономических признаков, отражающих химический состав и строение клетки и клеточной стенки и являющихся одной из наиболее значимых групп фенотипических признаков в систематике актиномицетов. Обоснована актуальность и перспективность изучения тейхоевых кислот и других гликополимеров клеточной стенки с целью использования для развития системы классификации актиномицетов. Представлены сведения о фитопатогенных стрептомицетах, их видовом составе, а также данные об известных к настоящему времени возможных факторах патогенности, в числе которых некоторые биополимеры клеточных стенок.


Экспериментальная часть


Глава IV. Материалы и методы, использованные в работе. В работе использован ряд микробиологических, химических, биохимических, инструментальных методов исследования. Методики, как правило, были описаны в литературе ранее и модифицированы для решения поставленных в работе задач. Исследовано более 100 штаммов актиномицетов, относящихся к различным родам актиномицетов из 12-ти семейств 9-ти подпорядков порядка Actinomycetales (ссылка скрыта) из различных коллекций микроорганизмов, в том числе ИНА, ВКМ и НИИ картофелеводства БелНАН. Морфологические и культуральные признаки определяли как описано Гаузе и др. (1983). Биомассу, собранную на логарифмической фазе роста, использовали для получения клеточных стенок (Стрешинская и др., 1979). Пептидогликан получали по модифицированному методу (Elliott et al., 1975). Анализ сахаров в кислотных гидролизатах клеточных стенок изучаемых актиномицетов, а также изомеров диаминопимелиновой кислоты в пептидогликане после его кислотного гидролиза, осуществляли методом хроматографии на бумаге сравнением со стандартными образцами (Стрешинская и др., 1989). Фосфолипиды определяли по методу, описанному ранее (Minnikin et al., 1984; O’Donnel et al., 1985). Тейхоевые кислоты (ТК) и гликополимеры экстрагировали 10%-ной трихлоруксусной кислотой (ТХУ) из клеточных стенок и обезжиренного мицелия. Очистку проводили на DEAE-Toyopearl 650M в линейном градиенте NaCl (0–0,5 М), методом препаративного высоковольтного электрофореза, а также фракционировали с помощью дробного осаждения этанолом (Tul’skaya et al., 1991).


Таблица 1. Основные продукты кислотного (2 М HCl, 100°, 3 ч) и щелочного (1 М NaOH, 100°, 3 ч) гидролизов изученных ТК.

Тейхоевая кислота

Основные продукты гидролиза

Тип ТК

Структура ТК

Кислотный гидролиз

Щелочной гидролиз

I G, 1,3

1,3-поли(глицерофосфат)

GroP; GroP2; Gro; Pi; С/З*

GroP; GroP2; Gro2P3; Pi; ФЭ**

I G, 2,3

2,3-поли(глицерофосфат)

GroP; GroP2; Gro; Pi; С/З

GroP; GroP2; Pi; ФЭ*

I R, 1,5

1,5-поли(рибитфосфат)

RboP; AhRboP; RboP2; Rbo; AhRbo; Pi; С/З

RboP; RboP2; Pi; ФЭ*

I R, 3,5

3,5-поли(рибитфосфат)

RboP; RboP2; Rbo; AhRbo; Pi

RboP; RboP2; Rbo; AhRbo; Pi

II GS, 3,3

Поли(гликозилглицерофосфат)

GroP; Gro; Pi; С/З

Gro; ФЭ

IV GS

Поли(глицерофосфат-гликозилглицерофосфат)

GroP; GroP2; Gro; Pi; С/З

GroP; GroP2; Pi; ФЭ; Э3

Gro-глицерин; GroP-глицерофосфат; GroP2-бисфосфат глицерина; Gro2P3-диглицеринтрифосфат; Rbo-рибит; AhRbo-ангидрорибит; RboP-рибитфосфат; AhRboP-ангидрорибитфосфат; RboP2-бисфосфат рибита; Pi минеральный фосфат; ФЭ – фосфорные эфиры; Э3 – см. раздел 5.1.;

* боковой заместитель на остатке полиола или сахарид в коре полимера;

** фосфорные эфиры образуются при наличии заместителей на остатках полиола.

Первичную структуру ТК и гликополимеров, а именно: качественный состав (вид полиола, наличие и природа заместителей, моносахаридный состав), строение мономерных единиц, локализацию фосфодиэфирной связи,  изучали химическими методами. Последние основаны на расщеплении молекулы полимера (кислотный, щелочной, ферментативный гидролизы) и изучении качественного и количественного состава полученных фрагментов, подвижности последних в электрическом поле (высоковольтный электрофорез) и в различных хроматографических системах относительно стандартных образцов, способности окрашиваться различными проявителями. Анализируя фосфорные эфиры полиолов, можно предварительно говорить о типе ТК (табл. 1). Абсолютную конфигурацию некоторых заместителей определяли, как описано (Gerwig et al., 1979; Gorshkova et al., 1997; Shashkov et al., 2006). Данные о строении фрагментов анализировали, что позволяло реконструировать структуру полимера (Kelemen and Baddiley, 1961). Молекулярные массы ТК определяли с помощью гельфильтрации на сефадексе G-50 (Tul’skaya et al., 1991). Результаты химических исследований подтверждали методами ЯМР-спектроскопии (Shashkov et al., 2001). Применялись также методы MALDI TOF масс-спектроскопии для определения структуры и молекулярной массы олигомера Kdn (Shashkov et al., 2002 а). Определение патогенности на картофеле и проростках редиса осуществляли по описанному методу (Goyer et al., 1998). Наличие такстомина в культуральной жидкости исследуемого стрептомицета проводили методом тонкослойной хроматографии.

Для определения нуклеотидной последовательности гена 16S рРНК использовали универсальные бактериальные праймеры 27f (5'-AGAGTTTGATCCTGGCTCAG), 530f (5'-GTGCCAGCAGCCGCGC) и 1492r (5'-TACGGYTACCTTGTTACGACTT). Определение нуклеотидной последовательности 16S рРНК проводили на автоматическом секвенаторе CEQ2000 XL (Beckman Coulter, США) в соответствии с предлагаемым фирмой протоколом. Для филогенетического анализа полученную нуклеотидную последовательность гена 16S рРНК изучаемого организма выравнивали с последовательностями типовых и референтных штаммов с помощью программы CLUSTAL W. Эволюционное расстояние рассчитывали по алгоритму (Ohta and Kimura, 1971; Kimura and Ohta 1973). Для ДНК-ДНК гибридизации Н3-меченную ДНК получали с использованием (1',2',5'-3H) дезоксицитидин-трифосфата и ферментов для ник-трансляци N 5500 (Amersham). ДНК-ДНК гибридизацию проводили на мембранных фильтрах (“Hiiu Kalur”, Таллин, Эстония) в оптимальных условиях (раствор Денхарда с 50% формамида (об/об), 50° С, 24 ч), как описано (Tijssen, 1993).


Результаты исследований