Алканы. Особенности строения. Методы синтеза. Реакции

Курсовой проект - Химия

Другие курсовые по предмету Химия

?инглетный метилен менее стабилен и часто, хотя и не всегда, образуется в первую очередь при фотолизе. Поскольку свет, поглощаемый диазометаном или кетеном при фотолизе, обладает большей энергией, чем необходимо для фотолиза, образовавшийся метилен является горячим, т.е. эти молекулы метилена имеют большую энергию, чем они должны были бы обладать при данной температуре.

Химические свойства метилена зависят от условий синтеза: реагента, из которого образуется метилен; длины волны используемого света; проводится ли реакция в жидкой или газовой фазе, и если в газовой фазе, то в присутствии инертного газа (азота, аргона и двуокиси углерода) или не такого уж инертного газа, кислорода. Ситуация очень сложная и не всегда соответствует точной интерпретации фактов. В общем можно представить два типа метилена: состояние с высокой энергией, высокой реакционной способностью и низкой селективностью; состояние с низкой энергией, более низкой реакционной способностью и большей селективностью. Согласно одной точке зрения (той, которая более принята), два типа метиленов являются просто синглетным и триплетным метиленом соответственно; согласно другой точке зрения, свойства метилена определяются не его спиновым состоянием, а тем, насколько он горячий.

Влияние инертного газа проявляется в понижении энергии метилена прежде, чем он вступит в реакцию, т.е. он превращает синглетный метилен в триплетный или горячий метилен в обычный. В газовой фазе это происходит в результате столкновений или с самим метиленом, или с веществом, из которого образуется метилен, - возбужденным диазометаном или кетеном, которые уже поглотили свет. (Газ может даже охладить горячие продукты метиленовой атаки, которые в противном случае могут перегруппироваться в другие соединения.) В жидкой фазе наблюдаются преимущественно свойства высокоэнергетического метилена, возможно, потому, что он реагирует быстро с имеющимися в избытке молекулами растворителя прежде, чем потеряет энергию. Вероятно, наиболее важной реакцией метилена является реакция внедрения

 

 

Метилен, возникающий в присутствии алкана, внедряется в каждую связь углерод - водород

 

 

Реакция с н-пентаном в жидкой фазе представляет интерес по следующей причине: соотношение продуктов реакции соответствует произвольной атаке реагентом. Полное отсутствие селективности в данном случае объясняется тем, что метилен, который является атакующей частицей, находится не только в синглетном состоянии, но еще и горячий, поэтому каждое столкновение с первичной или вторичной связью имеет достаточно энергии для реакции.

Доказано, что внедрение метилена может протекать по двум различным механизмам:

 

 

В реакциях метилена с алканами можно увидеть следующие довольно простые закономерности:

 

 

Горение

 

Реакция алканов с кислородом, приводящая к образованию двуокиси углерода, воды и, что наиболее важно, выделению тепла, является основной реакцией, происходящей в двигателе внутреннего сгорания; ее огромное практическое значение очевидно.

Механизм этой реакции очень сложен и до сих пор полностью не установлен. Однако нет сомнений, что это свободнорадикальная цепная реакция. Реакция очень экзотермична, но для того, чтобы она началась, требуется очень высокая температура - температура пламени. Как и в случае хлорирования, необходимо большое количество энергии для разрыва связи, в результате которого образуется реакционноспособная частица, начинающая цепь; если преодолеть этот барьер, то соответствующие стадии, продолжающие цепь, протекают легко и с выделением энергии.

Использование высокого давления сделало современные двигатели более эффективными, но в то же время создало новую проблему. При определенных условиях мягкий взрыв смеси топлива и воздуха в цилиндре сменяется детонацией, которая значительно уменьшает мощность двигателя.

Проблема детонации успешно решается двумя путями: а) выбором соответствующего углеводорода в качестве топлива и б) добавлением тетраэтилсвинца.

Испытания чистых соединений показали, что детонационные свойства углеводородов очень сильно изменяются в зависимости от структуры. Относительная антидетонационная способность топлива обычно характеризуется так называемым октановым числом: была выбрана произвольная шкала, причем н-гептану, который сильно детонирует, приписано октановое число, равное нулю, а 2,2,4-триметилпентану (изооктану) - октановое число 100. В настоящее время имеются топлива с антидетонационными свойствами, лучшими, чем у изооктана.

Бензиновая фракция, получаемая прямой перегонкой нефти (бензин прямой гонки), улучшается добавкой соединений с более высоким октановым числом; иногда она полностью заменяется этими топливами. Разветвленные алканы и алкены, а также ароматические углеводороды обычно обладают хорошими антидетонационными свойствами; они получаются из углеводородов нефти путем каталитического крекинга и каталитического реформинга. Сильно разветвленные алканы получают из алкенов и алканов реакцией алкилирования.

В 1922 г. Мидглей и Бойд (исследовательская лаборатория фирмы Дженерал моторс) обнаружили, что октановое число топлива сильно зависит от добавления небольших количеств тетраэтилсвинца (С2Н5)4РЬ. Бензин с добавкой этого вещества называется этилированным бензином.

Пиролиз: крекин?/p>