Исследование и прогноз величин, распределенных по закону Парето

Дипломная работа - Менеджмент

Другие дипломы по предмету Менеджмент

представляет собой дополнение (1.9) до единицы. Функция распределения F (x), определяющая вероятность того, что случайная величина Х примет значение меньше данного х, , для распределения Парето имеет вид:

 

. (1.10)

 

Соответствующая плотность вероятности р (х) находится как производная функции распределения и определяет вероятность того, что случайная величина примет значение равное х. Для распределения Парето плотность вероятности определяется выражением:

 

. (1.11)

 

Распределения, подобные распределению Парето в том плане, что они ограничены с одной стороны значениями, которые может принимать случайная величина, называются усеченными распределениями. Обычно они применяются в исследованиях, когда важна динамика поведения не всей совокупности исследуемых объектов, а лишь некоторой ее части или даже хвоста распределения, либо если часть совокупности распределена по одному закону, а часть - по другому.

Рассмотрим важную характеристику распределения Парето, определяющую области его применения в исследованиях. Для этого найдем математическое ожидание данного распределения:

 

. (1.12)

 

Таким образом, можно видеть, что математическое ожидание распределения Парето может быть конечно либо бесконечно в зависимости от параметра . Как уже было указано ранее, в экономических исследованиях распределения доходов выполняется условие , таким образом существует возможность найти математическое ожидание (средний уровень доходов, распределенных по закону Парето). Второй случай распределения Парето при представляет собой распределение с тяжелым хвостом (понятие рассматривается далее) и нашел применение в теории катастроф в качестве распределения, по которому определяется вероятность наступления редких, но значительных по масштабам, событий.

Рассмотрим еще одну интересную характеристику, которая определяет сумму накопленных значений х случайной величины, обозначим ее , (в рассмотренных ранее примерах это общее количество дохода всех лиц, попадающих в заданный интервал по доходу) между значениями х1 и х2. Эту величину можно определить следующим образом:

 

. (1.13)

 

При этом она будет тем точнее отображать реальность, чем больше будет расстояние между х1 и х2. Понятно, что при поведение этой функции будет зависеть от параметра таким же образом, как и выше найденное математическое ожидание.

При использовании данной функции для расчета, например, суммарного дохода лиц, которые получают доход от некоторого значения х1 до максимального дохода, получаемого в стране одним человеком, хmax, целесообразней принять в качестве х2 это значение хmax которое можно выразить так:

 

, (1.14)

 

где - значения, которые принимает случайная величина, в рассматриваемом примере - доход, в каждом конкретном случае.

Выражение (1.14) можно применять, если имеется необходимая информация о максимальном значении хmax. При этом суммарный эффект (1.13) будет конечным при любом значении параметра и выражение (1.13) можно использовать для прогнозирования суммарных эффектов случайной величины х, распределенной по закону Парето, даже если это распределение имеет тяжелый хвост. Опишем, как можно сделать выражение (1.13) еще более эффективным при анализе указанных случайных величин. Предположим (а можно утверждать это с большой долей уверенности) что величина хmax зависит от количества произошедших событий или наблюдаемых объектов п. А оно в свою очередь, конечно, зависти от времени t, таким образом получаем:

 

. (1.15)

 

Логично было бы так же предположить, что от времени зависит и параметр и A (это наверняка справедливо для экономических и социальных явлений, а, возможно, и для природных):

 

. (1.16)

 

Теперь можем переписать (1.13) для хmax и x0 в виде:

 

. (1.17)

 

Имея достаточное количество статистических данных можно рассчитать вид и параметры (1.15) и (1.16). Таким образом мы получим динамическую модель, описывающую накопленный суммарный эффект случайной величины, распределенной по закону Парето

1.4 Применение распределения Парето в теории катастроф

 

При внимательном анализе статистических данных по крупнейшим катастрофам выясняется, что они проявляют весьма необычные особенности, плохо укладывающиеся в привычные представления. Так, при Тянь-Шанском землетрясении 28.07.1976 г. в Китае погибло (по разным источникам) от 240 до 650 тыс. чел., что в десятки тысяч раз превосходит число погибших при обычном, "рядовом" разрушительном землетрясении.

Эта же закономерность наблюдается для наводнений. При наводнении 1931 г. на реке Янцзы в Китае погибло около 1,3 млн чел. Наводнение 1970 г. в Бангладеш вызвало гибель более 500 тыс. чел. Гигантские экстраординарные значения наблюдаются и для стоимостных характеристик ущерба, что типично для наиболее экономически развитых стран. При этом перечисленные катастрофы (происшедшие в нашем столетии), по-видимому, не являются максимально возможными. Во всяком случае, летописные источники и древнейшие памятники человечества описывают еще более разрушительные катаклизмы.

Таким образом, в ряду ущербов от катастроф изредка встречаются суперэкстремальные значения, несоизмеримые по величине со значениями для подавляющей части событий. Ущерб от этих суперэкстремальных событий сравним с с?/p>