Задачи Лоповок

Информация - Математика и статистика

Другие материалы по предмету Математика и статистика

156 и 180 см2. Найдите объем призмы.

219. Основанием прямой призмы является трапеция, площадь которой 306 см2. Площади параллельных боковых граней 40 и 300 см2, а площади других боковых граней 75 и 205 см2. Найдите объем призмы.

220. Основание прямой призмы четырехугольник, вписанный в окружность радиуса 65 см. Площади боковых граней относятся, как 63 : 52 ; 39 : 16. Диагональ наименьшей боковой грани 40 см. Найдите объем призмы.

221. В цилиндр высоты 12 см вписана шестиугольная призма, у которой три стороны, взятые черве одну, имеют длины по 3 см, остальные стороны основания по 5 см. Найдите объем призмы,

222. В цилиндр высоты 8 см вписана восьмиугольная призма, у которой длины четырех сторон основания, взятых через одну, по 2 см, а остальных сторон основания по 3 см. Найдите объем призмы.

223. В сферу радиуса Л вписана правильная треугольная призма. Радиус сферы, проведенный в вершину призмы, наклонен к плоскости боковой грани под углом к. Найдите объем призмы.

Объем пирамиды

234. Стороны основания треугольной пирамиды 15, 16, 17 см. Каждое боковое ребро наклонено к плоскости основания под углом в 45, Найдите объем пирамиды.

226, Длина каждого бокового ребра пирамиды 65 см. Ее основание трапеция с длинами сторон 14, 30, 50, 30 см. Найдите объем пирамиды.

236. Длин каждого бокового ребра пирамиды 35 см, стороны основания 20, 34, 60, 66 см. Найдите объезд пирамиды.

227. Высота правильной вдестиурол&ной пирамиды Я, Расстояние от середины высоты де бокового ребра у 4 раза меньше стороны основания. Найдите объем пирамиды.

228. Длина пятке ребер треугольной пирамиды не более 2 см. Докажите, что объем пирамиды не более 1 см3.

229. Докажите, что объем треугольной пирамиды меньше

квадратного корня из произведения длин всех ребер пирамиды.

230. Стороны основания усеченной треугольной призмы 28, 45, 53 см, а боковые ребра перпендикулярны основанию и равны 13, 14, 15 см. Найдите объем усеченной призмы (рис. 70).

Если плоскость, не параллельная плоскости основания призмы, пересекает все боковые ребра призмы, то полученные части приемы будем называть усеченными призмами.

231. Докажите, что объем усеченной треугольной призмы равен произведению площади перпендикулярного сечения на среднее арифметическое длин боковых ребер.

232. Стороны основания прямого параллелепипеда 6 и 8 см, угол между ними 30. Плоскость отсекает на трех боковых ребрах отрезки в 8, 10, 11 см. Найдите объем той части призмы, которая заключена между основанием и плоскостью сечения.

233. Основание прямой призмы трапеция, у которой стороны АВ == СО == 13 см, ВС = 18 см, АТ> == 28 см. Плоскость проходит через точку С и отсекает на ребрах ВВ\ и ВВ\ отрезки по 9 см. Найдите объем части призмы между основанием и проведенным сечением.

234. В параллелепипеде АВСВА\В\С\0\ точка К середина ребра АА\, точка М середина ребра СС\, ВВ\ = а, КВ\ == Ъ, МВ\ == с, причем ВВ\, КВ\ и МВ1 попарно взаимно перпендикулярны. Найдите объем параллелепипеда.

235. Развертка поверхности пирамиды квадрат со стороной а. Найдите объем пирамиды.

236. Длины сторон основания треугольной пирамиды 32, 34, 34 см. Периметры двух равных боковых граней по 150 см, третьей 162 см. Найдите объем пирамиды.

237. Даны тетраэдры МАВС и М\А \В\С\, у которых трехгранные углы с вершинами М и М1 равны. Докажите, что объемы этих тетраэдров относятся, как произведения длин ребер равных трехгранных углов.

238. Через сторону основания и среднюю линию противолежащей боковой грани правильной четырехугольной пирамиды проведена плоскость. Найдите отношение объемов частей, на которые плоскость разделила пирамиду.

239. Через сторону основания и середину высоты правильной четырехугольной пирамиды проведена плоскость. Найдите отношение объемов частей, на которые при этом разделилась пирамида.

240. Развертка пирамиды равнобедренный треугольник с основанием 18 см и высотой, проведенной к основанию, 12 см. Найдите объем пирамиды.

241. Докажите что объем правильной пирамиды меньше

та

-у куба длины ее бокового ребра.

242. Каждое боковое ребро пирамиды МАВСВ равно I. Известно, что ^ АМВ = /-. ВМС == ^. АМС == 90, ^ АМО == = ^ СМВ. Найдите объем пирамиды.

243. Основание пирамиды трапеция (или треугольник) со средней линией АВ, вершина пирамиды М, О середина стороны, параллельной средней линии. Докажите, что объем

пирамиды равен произведения площади сечения МАВ на з

расстояние от точки О до плоскости МАВ (рис. 71).

244. Основания многогранника лежат в параллельных плоскостях, все остальные грани треугольники или трапеции, все вершины которых лежат на основаниях. Докажите,

что объем многогранника V = ((?1 + Ог + 4<?о), где Я расстояние между плоскостями оснований, 61 и Оч площади оснований, а <?о площадь сечения, проходящего через середины всех ребер, не принадлежащих основаниям (рис. 72).

245. Найдите объем чердачного помещения, у которого основание прямоугольник 6 X 12 м, высота 1,5 м, длина гребня 9 м.

Объемы подобных тел

246. У двух правильных треугольных пирамид двугранные углы при основаниях равны по 60. Высота одной пирамиды равна стороне основания другой. Как относятся объемы этих пирамид?

247. При каком построении плоскость рассекает прямоугольный параллелепипед с измерениями 2, 4, 9 см на два подобных параллелепипеда? Найдите объемы этих параллелепипедов.

248. Через центр масс основания треугольной пирамиды проходит плоскость, парал