Дослідження двовимірної квадратичної стаціонарної системи із двома приватними інтегралами у вигляді кривих другого порядку

Дипломная работа - Математика и статистика

Другие дипломы по предмету Математика и статистика

 

 

 

 

 

 

 

 

 

 

 

 

Дипломна робота

Дослідження двовимірної квадратичної стаціонарної системи із двома приватними інтегралами у вигляді кривих другого порядку

Зміст

 

Введення

1. Побудова квадратичних двовимірних стаціонарних систем

1.1 Побудова квадратичної двовимірної стаціонарної системи із приватним інтегралом у вигляді параболи

1.2 Побудова квадратичної двовимірної стаціонарної системи із приватним інтегралом у вигляді окружності або гіперболи

1.3 Необхідні й достатні умови існування в системи (1.1) двох часток інтегралів (1.3), (1.13)

2. Якісне дослідження побудованих класів систем

2.1 Дослідження системи (1.1) з коефіцієнтами, заданими формулами (1.28) - (1.31)

2.2 Дослідження системи (1.1) з коефіцієнтами, заданими формулами (1.41) - (1.42)

2.3 Дослідження системи (1.1) з коефіцієнтами, заданими формулами (1.52) - (1.53)

Висновок

Список джерел

Додатки

Реферат

 

Дипломна робота ____ сторінок, 11 джерел.

Ключові слова й словосполучення: квадратична двовимірна стаціонарна система, приватний інтеграл, парабола, гіпербола, окружність, крапка, характеристичне рівняння, характеристичне число, вузол, сідло, фокус.

Дана робота містить результати досліджень автора, що ставляться до якісного дослідження в цілому двовимірної квадратичної стаціонарної системи.

Основним інструментом досліджень є поняття приватного інтеграла.

Робота складається із двох глав.

У першому розділі проводиться побудова квадратичних двовимірних стаціонарних систем із заданими інтегралами, при цьому коефіцієнти інтегралів виражаються через коефіцієнти системи, а коефіцієнти системи звязані між собою трьома співвідношеннями.

У другому розділі проводиться якісне дослідження в цілому виділених у першому розділі класів систем при фіксованих значеннях деяких параметрів.

Введення

 

Відомо, що в елементарних функціях і навіть у квадратурах інтегруються далеко не всі класи диференціальних рівнянь. У звязку із цим зявилася необхідність у створенні такої теорії, за допомогою якої можна було б вивчати властивості рішень диференціальних рівнянь по виду самих рівнянь. Такою теорією, поряд з аналітичної, і є якісна теорія диференціальних рівнянь.

Уперше задача якісного дослідження для найпростішого випадку системи двох диференціальних рівнянь із повною виразністю була поставлена А. Пуанкаре [7]. Пізніше дослідження А. Пуанкаре були доповнені И. Бендиксоном [3, с. 191-211] і уточнені Дж.Д. Биркгофом [4, с.175-179].

 

(0.1)

 

Однієї із задач якісної теорії диференціальних рівнянь є вивчення поводження траєкторій динамічної системи (0.1) на фазовій площині в цілому у випадку, коли P (x,y) і Q (x,y) - аналітичні функції. Інтерес до вивчення цієї системи або відповідного їй рівняння пояснюється їх безпосереднім практичним застосуванням у різних областях фізики й техніки.

 

(0.2)

 

Є багато робіт, у яких динамічні системи вивчалися в припущенні, що їхніми частками інтегралами є алгебраїчні криві. Поштовхом до більшості з них послужила робота Н.П. Еругина [6, с.659 - 670], у якій він дав спосіб побудови систем диференціальних рівнянь, що мають як свій приватний інтеграл криву заданого виду.

Знання одного приватного алгебраїчного інтеграла системи (0.1) у багатьох випадках допомагає побудувати повну якісну картину поводження інтегральних кривих у цілому. Відзначимо ряд робіт цього характеру для систем (0.1), у яких P (x,y) і Q (x,y) - поліноми другого ступеня.

Н.Н. Баутиним [1, с.181 - 196] і Н.Н. Серебряковою [8, с.160 - 166] повністю досліджений характер поводження траєкторій системи (0.1), що має два алгебраїчних інтеграли у вигляді прямих. В [10, с.732 - 735] Л.А. Черкасом таке дослідження проведене для рівняння (0.2) при наявності приватного інтеграла у вигляді кривої третього порядку. Яблонський А.И. [11, с.1752 - 1760] і Филипцов В.Ф. [9, с.469-476] вивчали квадратичні системи із припущенням, що приватним інтегралом були алгебраїчні криві четвертого порядку.

У даній роботі розглядається система

 

(0.3)

 

і проводиться якісне дослідження в цілому системи (0.3) за умови, що приватним інтегралом є крива четвертого порядку, що розпадається на дві криві другого порядку, одна й з яких парабола, друга окружність або гіпербола.

Робота складається із двох глав.

У першому розділі проводиться побудова квадратичних двовимірних стаціонарних систем із заданими інтегралами, при цьому коефіцієнти інтегралів виражаються через коефіцієнти системи, а коефіцієнти системи звязані між собою трьома співвідношеннями.

У другому розділі проводиться якісне дослідження в цілому виділених у першому розділі класів систем при фіксованих значеннях деяких параметрів.

1. Побудова квадратичних двовимірних стаціонарних систем

 

1.1 Побудова квадратичної двовимірної стаціонарної системи із приватним інтегралом у вигляді параболи

 

Розглянемо систему диференціальних рівнянь

 

(1.1)

 

Нехай система (1.1) має приватний інтеграл виду:

 

, (1.2)

 

де Fk (x,y) - однорідні поліноми від x і y ступеня k.

Як приватний інтеграл (1.2) візьмемо параболу виду:

 

F (x,y) (y+ (1 x2 + (2 x+ (3 = 0 (1.3)

 

Будемо припускати, що (3 (0, тобто парабола не проходить через початок координат.

Згідно [10, с.1752-1760] для інт?/p>