Дослідження двовимірної квадратичної стаціонарної системи із двома приватними інтегралами у вигляді кривих другого порядку

Дипломная работа - Математика и статистика

Другие дипломы по предмету Математика и статистика

аметра d, значить крапка - сідло. Досліджуємо крапку . Згідно (2.11) складемо характеристичне рівняння в крапці :

 

 

Характеристичними числами для крапки системи (2.8) будуть , .

Коріння - дійсні й одного знака, що залежать від параметра d. Якщо d0, то крапка - нестійкий вузол, а якщо d0, то крапка - стійкий вузол.

3. Досліджуємо поводження траєкторій в околиці крапки .

Складемо характеристичне рівняння згідно (2.11)

 

.

 

Характеристичними числами для крапки системи (2.8) будуть

 

,

 

Коріння - дійсні й одного знака, що залежать від параметра d. Якщо d0, то крапка - стійкий вузол, якщо d0, то крапка - нестійкий вузол.

4. Досліджуємо поводження траєкторій в околиці крапки .

Згідно (2.11) складемо характеристичне рівняння:

 

 

Характеристичними числами для крапки системи (2.8) будуть , . Коріння - дійсні й різні знаки не залежно від параметра d, отже - сідло. Досліджуємо нескінченно - вилучену частину площини системи (2.8) поза кінцями осі oy. Перетворення [7] переводить систему (2.8) у систему:

 

(2.12)

 

де .

Вивчимо нескінченно - вилучені крапки на осі U, тобто при z=0. Одержуємо:

 

Отже .

 

Таким чином, одержуємо дві крапки N1 (0,-1) і N2 (0,1), які є станом рівноваги. Досліджуємо характер цих крапок звичайним способом.

Складемо характеристичне рівняння в крапці N1 (0,-1).

 

(2.13), . Маємо:

, .

 

Коріння - дійсні й різні за знаком, отже крапка N1 (0,-1) - сідло.

Досліджуємо крапку N2 (0,1). Згідно (2.13) складемо характеристичне рівняння:

 

, .

 

Коріння - дійсні й одного знака, значить крапка N2 (0,1) - стійкий вузол.

Досліджуємо кінці осі y за допомогою перетворення [7] . Це перетворення переводить систему (2.8) у систему:

 

(2.14)

 

де .

Для дослідження станів рівноваги на кінцях осі y, нам необхідно досліджувати тільки крапку N3 (0,0). Складемо характеристичне рівняння в крапці N3 (0,0):

 

,

 

Коріння - дійсні й одного знака, значить крапка N3 (0,0) - нестійкий вузол.

Тепер дамо розподіл станів рівноваги системи (2.1) у вигляді таблиці 2.

 

Таблиця 2.

d?N1N2N3 (-?; 0) сідлоневуст. вузолвуст. вузол сідлосідловуст. вузолневуст. вузол (0; +?) сідловуст. вузолневуст. вузолсідлосідловуст. вузолневуст. вузол

Положення кривих (2.9), (2.10) і розташування щодо їхніх станів рівноваги при d (0 і d (0 дається відповідно мал.2 (а, б).

Поводження траєкторій системи в цілому при d (0 і d (0 дається мал.5 (а, б) додатка Б: Поводження траєкторій системи (2.8).

Питання про існування граничних циклів не виникає, тому що Воробйов А.П. [5] довів, для квадратичної системи граничний цикл не може оточувати вузол.

 

а (d0) б (d0)

Мал.2

 

2.3 Дослідження системи (1.1) з коефіцієнтами, заданими формулами (1.52) - (1.53)

 

Будемо проводити наше дослідження в припущенні, що , . Нехай ми маємо систему (1.1), коефіцієнти якої визначаються формулами (1.52) - (1.53). Тоді система (1.1) буде мати вигляд:

 

(2.15)

 

Інтегральні криві в цьому випадку мають вигляд:

 

(2.16)

(2.17)

 

Тобто приватні інтеграли (1.3) і (1.13) перетворюються в прямі таким чином, що інтегральна крива (2.16) збігається з однієї із прямих інтегральній кривій (2.17).

Знайдемо стани рівноваги системи (2.15). Дорівнявши праві частини системи нулю, і виключивши змінну y, одержимо наступне рівняння для визначення абсцис станів рівноваги:

 

(2.18)

 

З (2.18) одержуємо, що

 

, , .

 

Ординати крапок спокою мають вигляд:

 

, , .

 

Отже, маємо крапки

 

, , .

 

Досліджуємо поводження траєкторій на околицях станів рівноваги .

Досліджуємо стан рівноваги в крапці .

Складемо характеристичне рівняння.

 

Звідси

(2.19)

 

Отже, характеристичне рівняння прийме вид

 

 

Маємо

 

,

Або

.

 

Характеристичними числами для крапки для системи (2.15) будуть

 

.

 

Коріння - комплексні й залежать від параметра d. Виходить, якщо d0, то крапка - стійкий фокус, якщо d0, то крапка - нестійкий фокус. Досліджуємо крапку

 

.

 

Згідно (2.19) складемо характеристичне рівняння в крапці

 

.

 

Маємо

 

.

 

Характеристичними числами для крапки системи (2.15) будуть , . Коріння - дійсні й різні знаки не залежно від параметра d. Отже, крапка - сідло.

3. Досліджуємо крапку .

По (2.19) складемо характеристичне рівняння в крапці .

Одержимо

 

.

 

Вирішуючи рівняння, одержимо

 

,

тобто

,

 

Коріння - дійсні й одного знака, що залежать від параметра d. Якщо do, то крапка - нестійкий вузол, якщо d0, то крапка - стійкий вузол. Досліджуємо нескінченно - вилучену частину площини поза кінцями осі oy перетворенням [7] Це перетворення систему (2.15) переводить у систему:

 

(2.20)

 

де .

Вивчимо нескінченно - вилучені крапки на осі u, тобто при z=0. Одержуємо

 

Отже

 

Отже, маємо дві крапки N1 (0,2) і N2 (0,-2).

Досліджуємо характер цих крапок звичайним способом. Складемо характеристичне рівняння в крапці N1 (0,2).

 

(2.21)

.

 

Отже

 

, ,

 

Скористаємося паралельним переносом

 

 

і підставимо z, u у систему (2.20). Одержимо нову систему: