Влияние температуры на концентрацию триплетных молекул в твердых растворах при сенсибилизированном в...

Диссертация - Разное

Другие диссертации по предмету Разное

»едовалось.

Опираясь на результаты температурных исследований, можно разделять виды тушения люминесценции. Согласно классификации, предложенной С.И. Вавиловым, виды тушения делятся на тушения первого и второго рода [130]. Тушением первого рода названы процессы, в которых выход люминесценции уменьшается при воздействиях на невозбуждённые молекулы вещества (такое тушение так же носит название статического [19]). Под тушением второго рода понимают процессы, в которых выход люминесценции уменьшается при воздействии на возбуждённые молекулы вещества.

Примером статического тушения может служить образование нефлуоресцирующих комплексов в основном состоянии, примером тушения второго рода динамическое тушение, заключающееся в переносе энергии на невозбуждённые молекулы примеси. При тушении первого рода средняя длительность возбуждённого состояния молекул сохраняется постоянной, так как в возбуждённое состояние переходят лишь те из них, которые избежали внешних воздействий; при тушении второго рода из-за воздействия на возбуждённые молекулы вещества изменяется.

Для числа молекул в возбуждённом состоянии можно записать следующее выражение:

nВ = N,(7)

где N общее число молекул, - коэффициент, показывающий, какая часть от общего числа молекул находится в возбуждённом состоянии.

Учитывая вышеуказанные типы тушения, можно сказать, что статическое тушение возбуждённых состояний обусловлено уменьшением N, а динамическое уменьшением .

Влияние температуры на статическое и динамическое тушение различно. Если статическое тушение обусловлено существованием ассоциатов, то повышение температуры уменьшает их стабильность, тем самым увеличивая общее число одиночных молекул N в растворе. Это ведёт за собой увеличение числа возбуждённых молекул и как следствие, увеличение интенсивности люминесценции.

Константа же динамического тушения с ростом температуры увеличивается [19]. Примером динамического тушения может служить кислородное тушение люминесценции в твёрдых растворах. Константа динамического тушения определяется скоростью, с которой молекулы кислорода диффундируют к центрам взаимодействия, а коэффициент диффузии увеличивается с ростом температуры.

Примером влияния температуры на статическое тушение люминесценции могут служить результаты работы [106]. Так, например, относительный выход люминесценции при нагревании водного раствора родамина 6Ж и бензопурпурина 4Б от 20 до 50 С увеличивается ~ в 2,7 раза. Т.е. он практически восстанавливается до значения, с которого начинается падение выхода свечения родамина 6Ж при увеличении содержания в растворе бензопурпурина 4Б. Это указывает на разрушение смешанных ассоциатов при нагревании.

Исследования Сапунова В.В. и Егоровой Г.Д. процесса ассоциации ряда порфиринов в водных растворителях выявили Аррениусовскую зависимость константы образования ассоциатов от температуры [129]:

,(8)

где Е энергия активации рассматриваемого процесса.

Основная часть работ по изучению влияния температуры на степень ассоциации выполнена для жидких растворов. Подобных работ для твёрдых растворов в литературе обнаружить не удалось. В жидких растворах увеличение числа мономерных молекул при повышении температуры имеет обратимый характер, т.е. при понижении температуры их число уменьшается. По нашему мнению, в твёрдых растворах повышение температуры по той же причине, как и в жидких растворах, должно приводить к увеличению доли мономерных молекул. Однако, в этом случае может произойти после распада нарушение условий, необходимых для образования ассоциатов (изменение среднего расстояния между молекулами, их взаимной ориентации и т.д.). Такие различия могут быть обусловлены различной скоростью диффузионных процессов в жидкости и в твёрдом теле.

Одной из задач раздела химии, изучающего макрокинетику, является рассмотрение роли диффузии в химических процессах. Как правило, результирующая скорость процессов в реальных системах определяется совместным переносом реагирующих между собой компонентов [131]. Образование и распад ассоциатов, подобно химическим реакциям, обусловлены процессами межчастчного взаимодействия, только с меньшей энергией активации, и так же подчиняются законам химической кинетики. Вполне очевидно, что процессы межмолекулярного взаимодействия в реальных системах также должны быть взаимосвязаны с процессами переноса и описываться законами макрокинетики.

Для диффузии примесных молекул и процесса ассоциации, составляющих в совокупности реальный процесс, существуют характерные времена протекания соответственно D и AS. Если D AS, наблюдаемая скорость реакции должна определяться законами химической кинетики. В этом случае можно говорить о кинетическом режиме реакции. Если D AS или это величины одного порядка, наблюдаемая скорость реакции в той или иной степени должна определяться скоростью диффузии реагентов. В этом случае можно говорить о диффузионном режиме реакции.

Для молекулярной диффузии D = L2/D, где L пространственная область, характеризующая её протекание, D коэффициент диффузии. В случае рассмотрения влияния диффузии на процесс ассоциации, L область взаимодействий, обуславливающих межмолекулярную связь.

Характер зависимости коэффициента диффузии от температуры в жидкости и в твёрдом теле существенно различен. В жидкости

D = kT/6r,(9)