Влияние температуры на концентрацию триплетных молекул в твердых растворах при сенсибилизированном в...

Диссертация - Разное

Другие диссертации по предмету Разное

При исследованиях переноса энергии между одиночными молекулами следует учитывать пространственное распределение молекул примесей в каждом из растворителей.

В стеклообразных растворителях, как и в жидкостях, в силу однородности растворителя молекулы примеси равноудалены друг от друга. Функция распределения молекул f(r) может быть аппроксимирована - функцией, причём наиболее вероятное значение расстояний между ближайшими молекулами определяется средней концентрацией молекул : . Основным условием переноса энергии между одиночными молекулами в данной среде является хорошая растворимость молекул донора и акцептора для создания достаточно высоких концентраций, при которых становится заметен безызлучательный триплет-триплетный перенос энергии. Основные результаты по параметрам межмолекулярного триплет-триплетного переноса энергии получены в основном в стеклообразных растворах [7]. Зависимость константы скорости (3) от расстояния обычно представляют в виде [10,68]

Kобм(r) = k0 exp [-2(r-R)/L], (4)

где k0 константа скорости при контакте донора и акцептора, R радиус запрещённого объёма. Для большого набора пар доноров и акцепторов триплетного возбуждения в ряде работ [10-14] определены критические расстояния переноса энергии R0 и сделана оценка параметров спада обменных взаимодействий L. Следует отметить, что даже для наиболее изученной пары бензофенон-нафталин получены параметры (табл. 1), очень сильно отличающиеся друг от друга.

Таблица 1

Параметры обменно-резонансного тушения фосфоресценции бензофенона нафталином в стеклообразных матрицах

 

R0, L, lg k0Источник13,71,1010[11]14,91,877,1[12]12,91,437,2[10]14,50,6616[13]12,70,7710,2[14]

В работе [14] предполагается, что причиной подобного различия может быть некорректный анализ экспериментальных данных. Здесь же предложена экспериментальная методика и процедура обработки результатов, позволяющих корректно, по мнению авторов, извлекать информацию о механизме и параметрах тушения на основе анализа кинетических кривых затухания молекул донора в присутствии молекул акцептора.

Используя литературные значения где k0 и L можно рассчитать константу скорости динамического тушения в невязких жидкостях [69]:

kдин = (L3/2) k0 ( 2+2+2) 2R2Lk0,(5)

где = 2R/L. Полученные значения kдин на 5-8 порядков ниже экспериментальных величин. Авторы работы [70] предполагают, что причиной этого может быть неэкспоненциальный характер зависимости константы скорости тушения от расстояния.

На наш взгляд, вышеуказанные несоответствия параметров переноса могут быть обусловлены и другими причинами. При определении параметров переноса считается, что тушение молекул донора обусловлено только одиночными молекулами акцептора, участвующими в излучении сенсибилизированной фосфоресценции. Однако при столь высоких концентрациях раствора в стеклообразных растворителях (10-2 1 М/л) не исключено появление нелюминесцирующих или слаболюминесцирующих ассоциатов различной степени сложности (как гомо-, так и гетероассоциатов), на которые происходит эффективный перенос энергии [19]. Это также может являться причиной некорректного определения k0 и L. Наличие такого механизма концентрационного тушения должно приводить к несоответствию параметров тушения фосфоресценции донора и сенсибилизированной фосфоресценции акцептора.

Следует отметить также, что в стеклообразных растворах даже при столь высокой растворимости, которую позволяют создать концентрации примесей 1 М/л, среднее расстояние в донорно-акцепторной паре составляет 12-15 . Поэтому можно считать, что теоретические выводы по обменно-резонансному механизму проверены только до определённых расстояний в донорно-акцепторной паре. Особенности же переноса энергии при более близком расположении молекул примесей до конца не изучены.

Взаимодействие молекул растворителя с молекулами активатора так же может вносить вклад в измеряемые параметры свечения.

В последние годы значительно возрос интерес к исследованиям взаимодействий между молекулами, адсорбируемыми на поверхности твёрдого тела [71-82]. Такие системы позволяют получить достаточно близкие расстояния между взаимодействующими молекулами, а так же интерес к таким системам обусловлен особенностями влияния микроскопической структуры матрицы на физические характеристики молекул.

Адсорбция примесей может быть получена на порошкообразных окисях магния и алюминия, на поверхности кремнозёма, в пористых и канальных матрицах. В качестве матриц используются стёкла, полученные по золь-гелевой технологии или путём выщелачивания натриевоборосиликатного стекла. Одна из особенностей заключается в том, что пространственное распределение молекул примесей носит фрактальный характер и характеризуется значительным разбросом расстояний между ближайшими соседними молекулами адсорбата, т.е. функция f(r) отличается от - функции. Фракталы могут возникать либо в результате агрегации при диффузии (в них расстояние между ближайшими соседними частицами очень мало, постоянно и контролируется обычными, например ван-дер-ваальсовыми взаимодействиями между этими частицами), либо при взаимодействии с матрицей, вмещающей эти частицы [77].

Багничем С.А. исследовалась динамика триплетных возбуждений ароматических углеводородов при переходе от стеклообразных матриц к пористым [74