Управление процентным риском портфеля ГКО-ОФЗ в посткризисный период

Диссертация - Компьютеры, программирование

Другие диссертации по предмету Компьютеры, программирование

­дерингтон, формирование портфеля из государственных облигаций и фьючерсных контрактов позволяет добиваться существенного снижения уровня риска. Ожидаемая прибыль по портфелю и ее дисперсия определяются условиями

,(1.3.1)

,(1.3.2)

где MVp изменение рыночной стоимости портфеля, Pb изменение цены облигации, Pf изменение цены фьючерса, qb число облигаций, включенных в состав портфеля, qf число открытых фьючерсных контрактов (положительное в случае продажи фьючерсов и отрицательное в случае покупки фьючерсов), b среднеквадратическое отклонение изменения цены облигации, f среднеквадратическое отклонение изменения цены фьючерса, bf ковариация изменений цен облигации и фьючерса.

Определим коэффициент хеджирования как , то есть как часть портфеля государственных облигаций, которая хеджируется на фьючерсном рынке. Тогда

,(1.3.3)

.(1.3.4)

Корректируя размер коэффициента хеджирования, инвестор может изменять важнейшие характеристики своего портфеля: размер ожидаемой прибыли и ее дисперсию. Предположим, что полезность, обеспечиваемая портфелем инвестору, моделируется при помощи функции

,(1.3.5)

где >0 параметр, отражающий склонность инвестора к устранению риска.

График функции U(k) представляет собой квадратную параболу, ветви которой направлены вниз. Максимальный уровень полезности достигается при коэффициенте хеджирования

.(1.3.6)

Если абсолютное значение математического ожидания изменения цены фьючерса мало по сравнению с его дисперсией, а стремление инвестора к устранению риска достаточно велико, при расчете оптимального коэффициента хеджирования можно использовать формулу

.(1.3.7)

Тогда основные характеристики распределения прибыли портфеля принимают вид

,(1.3.8)

,(1.3.9)

где R2 коэффициент детерминации для изменений цен облигации и фьючерсного контракта.

Как свидетельствует уравнение (1.3.9), хеджирование вложений в облигации при помощи фьючерсных контрактов позволяет осуществить трансформацию процентного риска в так называемый базисный риск (basis risk), который обусловлен различием реакции цен облигации и фьючерсного контракта на сдвиги временной структуры процентных ставок. Эффективность защиты от риска прямо пропорциональна коэффициенту корреляции между ценами облигации и фьючерсного контракта. В случае, когда коэффициент корреляции равен единице, хеджирование позволяет добиваться полного устранения риска вложений в облигации.

Для определения оптимального значения коэффициента хеджирования k* в конкретных рыночных условиях Эдерингтон предложил оценивать параметры линейного уравнения регрессии

Pb = a +b Pf + (1.3.10)

или

Pb = b Pf + .(1.3.11)

Полученное значение коэффициента регрессии b дает оценку оптимального коэффициента хеджирования . При этом используется предположение, что среднеквадратические отклонения изменений цен облигации и фьючерса постоянны по времени, как и коэффициент корреляции между ними.

Это допущение выглядело вполне оправданным в конце 1970-х годов, когда исследователи финансовых рынков не располагали инструментами для моделирования многомерных временных рядов с изменяющимися статистическими характеристиками. Однако в 1995 г. Р.Энгл и К.Кронер разработали модель многофакторной одновременной обобщенной условной гетероскедастичности (MGARCHBEKK), которая предоставила возможность исследования многомерных временных рядов, характеризующихся изменяющимися ковариациями между их элементами. Д.Ватт предложил использовать эту модель для оценки коэффициента хеджирования при формировании портфеля из облигаций и процентных фьючерсов.

В двухфакторной MGARCHBEKK условные дисперсии и ковариация моделируются уравнениями вида

(1.3.12)

(1.3.13)

(1.3.14)

где h11,t условная дисперсия первой случайной переменной в момент времени t, h11,t-1 условная дисперсия первой случайной переменной в момент времени t-1, h22,t условная дисперсия второй случайной переменной в момент времени t, h22,t-1 условная дисперсия второй случайной переменной в момент времени t-1, h12,t условная ковариация первой и второй случайных переменных в момент времени t, h12,t-1 условная ковариация первой и второй случайных переменных в момент времени t-1, 1,t1 ошибка предсказания значения первой случайной переменной в момент времени t-1, 2,t-1 ошибка предсказания значения второй случайной переменной в момент времени t-1, с11, с12, с22, a11, a12, a21, a22, g11, g12, g21, g22 параметры модели.

Используя оценки условной ковариации между изменениями цен облигации и фьючерса h12,t и условной дисперсии изменения цены фьючерса h22,t, полученные при помощи модели MGARCHBEKK, Д.Ватт предложил рассчитывать коэффициент хеджирования по формуле

.(1.3.15)

Результаты тестирования двух различных подходов к определению оптимального коэффициента хеджирования по данным торгов на Монреальской бирже показали, что модели, использующие предположение о постоянстве дисперсий изменений цен облигации и фьючерса, а также коэффициента корреляции между ними, в среднем обеспечивают приемлемый уровень эффективности, но не справляются с задачей обеспечения защиты от процентного риска в периоды повышенной нестабильности финансового рынка. Когда конъюнктура финансового рынка приобретает неустойчивый характер, корреляция между изменениями цен облигаций и фьючерсов возрастает, а эффективность модели хеджирования Эдерингтона падает. Напротив, использование модели MGARCHBEKK при определении коэффициента хеджирования позволяет обеспечить надежную защиту от процентного ?/p>