Трактор гусеничный сельскохозяйственный тягового класса 4 на базе ВТ-150

Дипломная работа - Транспорт, логистика

Другие дипломы по предмету Транспорт, логистика

нове параболической сплайн-функции. Плоские участки опорной поверхности обеспечивают устойчивость звеньев на жестком грунте, а на слабодеформируемом вступают в контакт перемычки между основанием крыльев, свода и плоских участков, которые улучшают поперечную устойчивость транспортного средства. На грунтах с малой несущей способностью куполообразный свод концентрирует напряжение в грунтовом пространстве, что повышает тягово-сцепные свойства.

Звено выполнено цельным и содержит тело 1 звена с беговыми дорожками 2, направляющими гребнями 3 и проушинами. К телу звена примыкают короткое крыло и длинное - уширитель, которые имеют выпуклую форму в сторону почвы.

Тело звена в центре имеет вогнутую куполообразную форму 7. Она плавно переходит в плоские участки поверхности звена и далее - в выпуклые по форме крыльев, в результате чего образуются перемычки 9.

Звено изготавливается, например, единой отливкой, а плавность перехода из одной поверхности в другую обеспечивается параболической сплайн-функцией, причем кривизна выпуклой формы крыльев и их ширина выбираются из условия равенства моментов сил, возникающих при вертикальной, деформации грунта относительно осей беговых дорожек.

При движении транспортного средства по жесткому грунту каждое звено гусеницы контактирует плоскими участками своей опорной поверхности, находящимися в зоне нагрузок, воспринимаемых от опорных катков. Этим обеспечивается устойчивость звеньев.

При взаимодействии звена со слабо-деформируемым грунтом в контакт вступают перемычки 9, которые улучшают поперечную устойчивость движения транспортного средства, в частности, на косогоре.

При погружении звена в грунт с малой несущей способностью криволинейная часть его опорной поверхности вызывает в зоне контакта с грунтом отклонение приложенной нагрузки от вертикали и появление касательных составляющих в виде сил трения между поверхностью звена и грунтом, а также нормальных составляющих, воспринимаемых объемно деформируемым пространством грунта. Поэтому под выпуклой поверхностью крыльев образуется зона рассеивания напряжений, которая способствует понижению уровня нагрузки кромок звена на грунт, что обеспечивает предохранение его верхнего слоя от разрушения.

Под вогнутой формой поверхности звена напряжение концентрируется вглубь грунтового объема, т. е. грунтовые слои подвергаются обжатию, тем самым, конструкция звена обеспечивает повышение сцепных свойств защемленного грунта с его опорной поверхностью.

 

3.7.4 Трак гусеничной цепи

Изобретение предназначено для использования в качестве опорной части трака (литого, составного или другого типа) гусеничной цепи транспортного средства. Цель изобретения - повышение сцепления с опорной поверхностью. Трак гусеничной цепи содержит основание и расположенные на. нем по изогнутой линии поперек гусеничной цепи и расчлененные на ряд зубьев грунтозацепы. Зубья в ряду расположены с промежутками в проекции на плоскость, поперечную продольной оси гусеничной цепи. Ширина зубьев в проекции на ту же плоскость равна 0,5-1,1 их высоты, а ширина промежутков равна 0,2-1,2 ширины отдельного зуба. Крайние грунтозацепы образуют угол 150 - 170, биссектриса которого совпадает с продольной осью гусеничной цепи, а вершина обращена в сторону передней кромки трака на рабочем участке этой цепи.

Трак составной гусеницы, опорная часть которого содержит основание и расположенные на нем снизу по изогнутой линии поперек гусеничной цепи расчлененные на ряд зубьев грунтозацепы, причем ширина зубьев в проекции на плоскость, поперечную продольной оси гусеничной цепи, равна 0,5-1,1 их высоты, а расстояние между ними в проекции на ту же плоскость равно 0,1-1,1. ширины отдельного зуба. С такой конструкцией опорной части трака гусеничная цепь транспортного средства не обеспечивает достаточного сцепления с опорной поверхностью (грунтом, почвой или снегом) из-за того, что крайние зубья грунтозацепов не ориентированы относительно оси гусеничной цепи и направления движения трактора.

Как показали результаты испытаний, в диапазоне угла б существует качественный скачок, а коэффициент сцепления трака на 10-20% выше по сравнению с траком, у которого б =0. За пределами указанного диапазона б коэффициент сцепления всегда ниже (рис 1.11). Физически это явление объясняется следующим. Как известно, при сдвиге трака в почве возникает напряжение, изобары которых показаны на рисунке 1.10. Изобары располагаются в основном в секторе с углом 2у, составляющим в зависимости от почвенных условий угол 60-90, и концентрируются в направлении центра площадки нагружения (в нашем случае площадкой нагружения является каждый зуб грунтозацепа). Известно также, что величина максимальных напряжений ф при сдвиге почвы траком может определяться по зависимости Мора-Кулона:

 

С0+qtgв (1.1)

 

где С0 - сцепление почвы;

в - угол внутреннего трения почвы;- нормальное давление (пригрузка).

Из зависимости (1.1) следует; что для одной и той же почвы чем больше нормальное давление q, тем больше ф, а при отсутствии пригрузки q=0 напряжение ф определяется только сцеплением почвы. Таким образом, чем больше в сторону отрицательного угла б будет изменяться наклон крайнего зуба, тем большая часть изобар будет располагаться вне ширины трака и тем большая часть суммарного напряжения сдвига будет состоять из напряжений, определяемых только сцеплением почвы. И, наоборот, чем больше в стороны положительного угла будет и?/p>