Самоконтроль в процессе обучения по курсу алгебры в 7 классе

Дипломная работа - Педагогика

Другие дипломы по предмету Педагогика



В°льными условиями, ставящими их перед необходимостью самостоятельно контролировать правильность полученного ответа. Здесь большой вред наносят готовые ответы в задачниках. Учебники, в которых ответы отсутствуют, ставят учащихся перед необходимостью не только решить, но и доказать правильность полученного ответа.

  • 2 Надо разъяснить учащимся, что результаты решения задачи или любых математических вычислений и преобразований могут быть полезны только в том случае, если они правильны, и показать, какой вред может принести неправильный ответ. Эффективность таких разъяснений окажется гораздо значительнее, если они будут вестись при решении задач, отражающих ту или иную практическую ситуацию.
  • 3 Изредка целесообразно предлагать учащимся и такие задачи, неправильность полученного ответа которых выясняется только в результате проверки.
  • Задача. 65 детей надо разместить в четырёх палатках так, чтобы во второй палатке было в полтора раза больше детей, чем в первой, а в третьей на 4 ребёнка меньше, чем во второй, а в четвёртой в два раза больше, чем в третьей. Сколько детей надо поместить в первую палатку?
  • Уравнение, составленное по условию задачи имеет единственный корень 11. Казалось бы, что задача решена. Однако проверка ответа по содержанию задачи показывает, что в таком случае пришлось бы размещать во вторую палатку 16,5 детей, а в третью 12,5, что, конечно, невозможно. Следовательно задача с такими условиями не имеет решения.
  • Это пример задач провоцирующего характера , условия которых содержат упоминания, указания или другие побудители, подталкивающие учащихся к выбору неправильного ответа. В методической литературе такие задачи называют ещё задачами - ловушками.
  • Дидактическая ценность провоцирующих задач неоспорима - они служат действенным средством предупреждения различного рода заблуждений или ошибок школьников. Совершая ошибку на глазах учителя или учащихся и осознавая провоцирующий характер учебной ситуации, ученик испытывает сильнейшее впечатление, надолго запоминает ошибочные действия и в дальнейшем на подсознательном уровне остерегается их.
  • Провоцирующие задачи обладают высоким развивающим потенциалом. Они способствуют воспитанию оного из важнейших качеств мышления - критичности, приучают к анализу воспринимаемой информации, её разносторонней оценке, повышают интерес школьников к занятиям математикой.
  • Несмотря на эти и другие положительные качества, феномен провоцирующих задач изучен недостаточно.
  • При самом первом рассмотрении полезно выделять следующие разновидности задач провоцирующего характера:
  • I Задачи, условия которых в той или иной форме навязывают неверный ответ.
  • II Задачи, условия которых тем или иным способом подсказывают неверный путь решения.
  • III Задачи, вынуждающие придумывать такие математические объекты, которые при заданных условиях немогут иметь места.
  • IV Задачи, вводящие в заблуждение из-за неоднозначности трактовки терминов, словесных оборотов, буквенных или числовых выражений.
  • V Задачи, условия которых допускают возможность "опровержения" семантически верного синтаксическим или иным нематематическим способом.
  • Рассмотрим подробнее каждую разновидность и соответствующие ей примеры.
  • I Задачи, условия которых навязывают неверный ответ.
  • Примеры.
  • 1) Сколько граней имеет новый шестигранный карандаш?
  • Навязывается ответ: "6 граней", но он неверный, т.к. помимо 6 боковых граней у нового карандаша есть ещё 2 торцевые грани. Правильный ответ: "8 граней".
  • 2) Сколько цифр потребуется, чтобы записать двенадцатизначное число?
  • Навязывается ответ: "12 цифр", но это не так, поскольку десятичная система счисления обходится всего лишь десятью цифрами. Правильный ответ: "Двенадцатизначное число можно записать с помощью одной, двух, трёх, четырёх, пяти, шести, семи, восьми, девяти, десяти цифр".
  • 3) Какое из чисел 205, 206, 207, 208, 209, 210 является простым?
  • Чаще всего учащиеся считают простым число 207 или 209, но это неверно. Все записанные выше числа являются составными. Правильный ответ: "Никакое".
  • 4) Какое простое число следует за числом 200?
  • Напрашивается ответ: 201, ведь это число - следующее за числом 200. Но этот ответ неверен, т.к. число 201 - составное. На самом деле искомое число 211.
  • 5) Что больше число а или число 2а?
  • Обычно учащиеся отвечают: "2а", ведь, чтобы получить 2а, нужно а умножить на 2. Но при отрицательных значениях а справедливо обратное утверждение. Правильный ответ: "Не известно".
  • 6) Сколько углов в квадратной комнате? (Восемь).
  • 7) Что легче 1 кг пуха или 1 кг железа? (Одинаково).
  • II Задачи, побуждающие к выбору неверного способа решения.
  • Примеры.
  • 1) Тройка лошадей проскакала 15 км. Сколько километров проскакала каждая лошадь?
  • Хочется выполнить деление 15 : 3 и тогда ответ - "5 км". На самом же деле деление выполнять вовсе не требуется, поскольку каждая лошадь проскакала столько же, сколько и вся тройка, т.е. 15 км.
  • 2) Лупа даёт четырёхкратное увеличение. Каким будет угол величиной в 10 , рассматриваемый через эту лупу?
  • Напрашивается действие умножение 4 10, которое приводит к неверному ответу. Но умножать вовсе не требуется. Правильный ответ: "10".
  • 3) У палки два конца. Если один из них отпилить, сколько концов получится?
  • Сразу кажется, что нужно выполнить вычитание 2 - 1, что приводит к явно несуразному ответу "у палки один конец". На самом деле нужно на