Разработка экономико-математической модели по оптимизации отраслевой структуры производства
Дипломная работа - Менеджмент
Другие дипломы по предмету Менеджмент
?ограммирования задана в двумерном пространстве, т. е. ограничения содержат две переменные.
Если в ЗЛП ограничения заданы в виде неравенств с двумя переменными, она может быть решена графически. Графический метод решения ЗЛП состоит из следующих этапов.
Этап 1.
Сначала на координатной плоскости x1Ox2 строится допустимая многоугольная область (область допустимых решений, область определения), соответствующая ограничениям:
Не приводя строгих доказательств, укажем те случаи, которые тут могут получится.
. Основной случай - получающаяся область имеет вид ограниченного выпуклого многоугольника (рис. 1а).
. Неосновной случай ? получается неограниченный выпуклый многоугольник, имеющий вид, подобный изображенному на рис. 1б. Подобная ситуация, например, получится, если в рассмотренном выше примере убрать ограничение х1 + х 2 ? 3. Оставшаяся часть будет неограниченным выпуклым многоугольником.
Наконец, возможен случай, когда неравенства (1.6) противоречат друг другу, и допустимая область вообще пуста.
Рассмотрим теорию на конкретном примере:
Найти допустимую область задачи линейного программирования, определяемую ограничениями
Решение:
. Рассмотрим прямую -x1+x2 = 1. При x1 = 0, x2 = 0, а при x2= 0, x1= -1. Таким образом, эта прямая проходит через точки (0,1) и (-1,0). Беря x1 = x2 = 0, получим, что -0+0<1 и поэтому интересующая нас полуплоскость лежит ниже прямой, изображенной на рис. 4.а.
. Рассмотрим прямую . При , а при . Таким образом, эта прямая проходит через точки (0, -1/2) и (1,0). так как (4.б).
. Наконец, рассмотрим прямую . Она проходит через точки (0,3) и (3,0) и так как 0+0<3, то интересующая нас полуплоскость лежит ниже прямой, изображенной на рис. 4.в.
Сводя все вместе и добавляя условия х1 ? 0,х2 ? 0 получим рисунок 5, где выделена область, в которой выполняются одновременно все ограничения (1.32). Обратим внимание на то, что получившаяся область имеет вид выпуклого многоугольника.
Этап 2.
Вернёмся теперь к исходной задаче линейного программирования. В ней, кроме системы неравенств, есть еще целевая функция с1х1+с2х2 =>max.
Рассмотрим прямую с1х1+с2х2 = L. Будем увеличивать L. Что будет происходить с нашей прямой?
Легко догадаться, что прямая будет двигаться параллельно самой себе в том направлении, которое дается вектором (с1,с2), так как это ? вектор нормали к нашей прямой и одновременно вектор градиента функции
(х1,х2) = с1х1+с2х2 .
.3 Симплекс метод - метод линейного программирования, который реализует рациональный перебор базисных допустимых решений, в виде конечного итеративного процесса, необходимо улучшающего значение целевой функции на каждом шаге.
Применение симплекс-метода для задачи линейного программирования предполагает предварительное приведение ее формальной постановки к канонической форме с n неотрицательными переменными: (X1, ..., Xn), где требуется минимизация линейной целевой функции при m линейных ограничениях типа равенств. Среди переменных задачи выбирается начальный базис из m переменных, для определенности (X1, ..., Xm), которые должны иметь неотрицательные значения, когда остальные (n-m) свободные переменные равны 0. Целевая функция и ограничения равенства преобразуются к диагональной форме относительно базисных переменных, переменных, где каждая базисная переменная входит только в одно уравнение с коэффициентом 1.
Данная формальная модель задачи линейного программирования обычно задается в форме, так называемой симплекс-таблицы, удобной для выполнения операций симплекс-метода:
Симплекс-таблица
1X1X2...XmXm+1...XnX0A0,00 0 ...0 A0,m+1...A0,nX1 A1,01 0 ...0 A1,m+1...A1,nX2 A2,00 1 ...0 A2,m+1...A2,n..................... ......Xm Am,00 0 ...1 Am,m+1 ...Am,n
Верхняя строка симплекс-таблицы представляет целевую функцию задачи. Каждая строка симплекс-таблицы, кроме первой, соответствует определенному ограничению-равенству задачи. Свободные члены ограничений составляют крайний левый столбец таблицы. Слева от таблицы записаны текущие базисные переменные (X1, ..., Xm). Сверху от таблицы приведен набор всех переменных задачи, где Xm+1, ..., Xn - свободные переменные задачи.
На начальном шаге алгоритма симплекс-метода должно быть выбрано базисное допустимое решение (X1, ..., Xm) >= 0 при Xj = 0 (j = m+1, ..., n), следовательно, все свободные члены ограничений Ai,0 >= 0 (i = 1, ..., m). Когда это условие выполнено, симплекс-таблица называется прямо-допустимой, так как в этом случае базисные переменные, равные Ai,0, определяют допустимое решение прямой задачи линейного программирования. Если все коэффициенты целевой функции A0,j >= 0 (j = 1, ..., m), то симплекс-таблица называется двойственно-допустимой, поскольку соответствующее решение является допустимым для двойственной задачи линейного программирования.
Если симплекс-таблица является одновременно прямо и двойственно допустимой, т.е. одновременно все Ai,0 >= 0 и A0,j >= 0, то решение оптимально.
Действительно, поскольку допустимыми являются лишь неотрицательные значения управляемых параметров, то изменение целевой функции за счет вариации свободных переменных, через которые она выражена, возможно только в сторону увеличения, т.e. будет ухудшаться. Если среди ее коэффициентов имеются A0,j < 0, то значение целевой функции еще можно уменьшить (т.e. улучшить), увеличивая значение любой свободной переменной Xj с отрицательным коэффициентом A0,j при поб