Перспективи розвитку технології аерозольних лікарських форм
Курсовой проект - Медицина, физкультура, здравоохранение
Другие курсовые по предмету Медицина, физкультура, здравоохранение
стандартне геометричне відхилення (GSD) розраховувалися на графіку логарифмічної ймовірності.
Фіг. 4 показує Будезонід, вдихуваний у вигляді ліпосомних препаратів форм Будезонід-DLPC з дозами від низьких до високих, що розпорошуються за допомогою розпилювача Aerotech II при швидкості потоку 10 літрів у хвилину, як визначено на моделі, що імітує легені людини із загальним обсягом (TV) 500 мл і при 15 вдихань у мінуту (ВРМ). Значення представляють Будезонід, зібраний при різному часі розпилення зразків аерозолю на фільтри, приєднані до Респіратора Харварда, доведені до загального обсягу (TV) в 500 мл і при швидкості 15 вдихань у хвилину (ВРМ).
Фіг. 5 ілюструє тимчасову залежність Cs концентрацій, вдихуваних через що розпорошуються ліпосомні й кремофорні готові препарати. На діаграмі представлені комплекси Cs-Cremophor (50 мг/мл; кружки), Cs-DLPC (5 мг/мл; зафарбовані трикутники) і Cs-DLPC (20 мг/мл; ромби).
Фіг. 6 ілюструє концентрацію пульмональної Cs за час вдихання в ICR мишей
(35 г) після вдихання розпиленого комплексу Cs-DLPC (20 мг/мл).
Фіг. 7 ілюструє протизапальний ефект комплексу Bud-DLPC з високими лозами на лейкоцити при проведенні легеневого бронхиоальвеолярного лаважу (BAL) у відповідь на LPS (ендотоксин) стимул.
Фіг. 8 ілюструє аналіз перколяціонного градієнта Bud-DLPC ліпосом.
Фіг. 9 ілюструє вихід аерозолю DLPC (мг/мл) при розпиленні ліпосомної композиції з порожнім DLPC, Cs-DLPC і Bud-DLPC зі зростаючими концентраціями. Аерозолі одержували за допомогою тестованої води й стандартизованого розпилювача Aerotech II (початковий стартовий обсяг 4 мол; швидкість потоку 10 л/хв) і парні зразки збирали в AGI-4 при 4-5 і 6-7 хвилинах розпилення. Концентрації DLPC визначали за допомогою ВЕЖХ аналізу. Представлені дані є характерними для готових препаратів, тестованих при кожній зазначеній концентрації, і нанесені на графік залежно від початкового змісту DLPC (мг/мл) у ліпосомах.
Фіг. 10 ілюструє розподіл маси (мг/хв) розпилених готових препаративних форм із порожнім DLPC, Cs-DLPC і Bud-DLPC зі зростаючими концентраціями. Аерозолі одержували за допомогою тестованої води й стандартизованого розпилювача Aerotech II (початковий стартовий обсяг 5 мл; швидкість потоку 10 л/хв) і вихід маси визначали з використанням аналітичного балансу через 10 хвилин розпилення.
Представлені дані є характерними для готових препаративних форм, тестованих при кожній зазначеній концентрації, і нанесені на графік залежно від початкового змісту DLPC (мг/мл) у ліпосомах.
Фіг. 11 ілюструє вихід Cs і Bud (мг/хв) у розпилених аерозольних ліпосомних препаратах Cs-DLPC і Bud-DLPC зі зростаючими концентраціями. Аерозолі одержували за допомогою тестованої води й стандартизованого розпилювача Aerotech II (початковий стартовий обсяг
5 мл; швидкість потоку 10 л/хв) і парні зразки збирали в отсекателе AGI-4 при 4-5 і 6-7 хвилинах розпилення. Концентрації DLPC визначали за допомогою ВЭЖХ аналізу аліквотів зразків, також аналізованих на зміст DLPC (фіг. 1). Представлені дані є характерними для готових препаративних форм, тестованих при кожній зазначеній концентрації, і нанесені на графік залежно від початкового змісту лікарського засобу (мг/мл) у ліпосомах.
Фіг. 12 ілюструє вязкість (сантипуази) ліпосомних готових препаративних форм із порожнім DLPC, Cs-DLPC і Bud-DLPC зі зростаючими концентраціями (початковий стартовий обсяг 10 мл; при кімнатній температурі навколишнього середовища). Дані представляють середню величину від 10 спостережень для кожної з тестуємих готових препаративних форм при кожній із зазначених концентрацій і нанесені на діаграму залежно від початкового змісту DLPC (мг/мл) у ліпосомах.
Фіг. 13 ілюструє аналіз просторового натягу (діни/див) ліпосомних препаратів з порожнім DLPC, Cs-DLPC і Bud-DLPC зі зростаючими концентраціями (початковий стартовий обсяг 7 мл; при кімнатній температурі навколишнього середовища). Представлені дані представляють середню величину від 10 спостережень для кожної з тестуємих готових препаративних форм при кожній із зазначених концентрацій і нанесені на діаграму залежно від початкового змісту DLPC (мг/мл) у ліпосомах. Зразки також тестували на вязкість.
Метою справжнього винаходу є поліпшення ефективності доставки високодозованих фармацевтичних аерозольних композицій, що складаються з комплексу зєднення - ліпосома. Наприклад, справжній винахід описує поліпшену ефективність доставки ліпосомного аерозолю із циклоспорином A. У серії експериментів визначено, що вихід аерозольного лікарського засобу можна поліпшити при застосуванні ліпосомних готових препаративних форм із низькою температурою зміни фази, таких як DLPC (що містить 12 атомів вуглецю, жирні кислоти з насиченими бічними ланцюгами). Також було визначено, що певні розпилювачі підвищують вихід аерозольного ліпосомного лікарського засобу при бажаному розмірі аеродинамічного діаметра в діапазоні 1-3 мкм по медіані маси (MMAD). Концентрація циклоспорину A, застосовуваного в цих ранніх дослідженнях, становила 1,0 мг із 7,5 мг DLPC на мол вихідного розчину в резервуарі.
В 1993 році зявилася необхідність у підвищенні виходу аерозольного ліпосомного циклоспорину A шляхом збільшення виробництва препарату. Це могло бути здійснене різними шляхами, такими як вибір більше ефективного розпилювача. Вихід ліпосомного аерозольного циклоспорину A підвищувався шляхом доповнення розпилювачем Aerotech II (ATII) (з CIS-USA, Bedford, Mass). ATII дає приблизно 50-процентне підвищення аерозольного виходу в порівнянні з використуваємим колись Puritan Bennett 1600sj.
Другий спосіб підвищення виходу аерозольного ліпосомного лікарського засо