Биология

  • 281. Биологическая память
    Информация пополнение в коллекции 12.01.2009

    Каждое запоминаемое событие кодируется в ЦНС специфическими последовательностями нуклеотидов в РНК. Хиден провёл ряд работ при помощи изобретённого им микрометода, позволяющего исследовать количество и соотношение нуклеотидов в клетке. Оказалось, что при выработке условного рефлекса у крыс ( балансировка на проволоке, по которой они пробирались к площадке с пищей) увеличивалось отношение нуклеотидов аденина и урацила в РНК некоторых нейронов. В другом исследовании было установлено, что переучивание крыс пользоваться при добывании пищи правой лапой вместо левой и наоборот оказывало влияние на содержание нуклеотидов в нейронах 5-6-го слоя двигательной коры. На основании результатов этих опытов Хиден пришёл к выводу, что под влиянием нервных импульсов происходит перестройка в последовательности нуклеотидов РНК. Это, естественно, сказывается на синтезе белка, в молекулу которого вносится какой-то отпечаток происшедших изменений в молекуле РНК. Молекула белка становится ”чувствительной” к нервным импульсам определённого качества. Она “узнаёт” в дальнейшем эти импульсы и реагирует на них освобождением медиаторных веществ, которые и переносят нервные импульсы с нейрона на нейрон через синаптические связи. В том случае, когда меняется информация, закодированная в нервных импульсах, такого “узнавания” не происходит и передача импульса не осуществляется.

  • 282. Биологическая роль витаминов, липидов, процессов брожения
    Реферат пополнение в коллекции 24.05.2010

    Очистка газообразных органических веществ производится главным образом путем вымораживания, фракционированного испарения смесей при низких температурах, а также при помощи целого ряда химических операций, позволяющих связать имеющиеся в газообразном веществе примеси. Большие успехи достигнуты в области разделения газов хроматографическим методом. Благодаря большей скорости диффузии газов по сравнению с жидкостями скорость пропускания разделяемого газа через колонку и размеры гранул адсорбента могут быть значительно увеличены. При хроматографическом разделении газов используется также сильная температурная зависимость адсорбции. Иногда весь процесс ведут при низкой температуре, иногда при высокой, а в ряде случаев выгодно вводить газовую смесь в охлажденную колонку, а затем вытеснять компоненты, постепенно повышая температуру. В последнее время все большее значение приобретает газо-жидкостная, или газовая, хроматография, отличающаяся тем, что в колонку вместо твердого адсорбента помещается пористый материал, пропитанный высококипящей жидкостью. Разделяемые вещества (газы или жидкости в испаренном виде) пропускают через такую колонку в токе инертного газа (N2, H2, Не). Пары разных веществ задерживаются жидкой фазой по-разному, а потому выходят из колонки через разные промежутки времени.

  • 283. Биологическая роль гидролиза в процессах жизнедеятельности организма
    Информация пополнение в коллекции 02.05.2010
  • 284. Биологическая роль гидролиза в процессах жизнедеятельности организма
    Информация пополнение в коллекции 12.01.2009

    Гидролиз белков. Белковые вещества составляют громадный класс органических, то есть углеродистых, а именно углеродисто азотистых соединений, неизбежно встречаемых в каждом организме. Роль белков в организме огромна. Без белков или их составных частей аминокислот не может быть обеспечено воспроизводство основных структурных элементов органов и тканей, а также образование ряда важнейших веществ, как, например, ферментов и гормонов. Белки пищи прежде, чем быть использованы для построения тканей тела, предварительно расщепляются. Организмом используется для питания не сам пищевой белок, а его структурные элементы аминокислоты и, может быть, частично простейшие пептиды, из которых затем в клетках синтезируются специфические для данного вида организма белковые вещества.

  • 285. Биологическая роль, структура и выделение митохондрий из печени крыс.
    Информация пополнение в коллекции 12.01.2009

    Митохондрии печени крысы содержат значительные количества фосфатидилэтаноламина, фосфатидилхолина, инозитфосфатидов, кардиолипина и фосфатидилсерина; содержание плазмалогена и сфингомиелина невелико, иногда они вовсе отсутствуют. Характерное содержание и количественное содержание липидов в митохондриальной мембране, вероятно обусловлены необходимостью поддержания термодинамически устойчивого двойного слоя липидов, образующего остов мембраны, который служит опорой для дыхательных ансамблей. По-видимому, большое значение имеет тот факт, что практически все липиды митохондриальной мембраны экстрагируются смесью хлороформ - метанол. Это указывает на наличие лишь незначительного числа ковалентных связей между липидами и белковыми элементами или даже на полное их отсутствие; этот факт свидетельствует о высокой степени стабилизации липидов и белков мембранных структурах. Крейн показал, что цитохром с соединяется с фосфатидилэтаноламином, образуя устойчивый комплекс. Возможно, что именно такое взаимодействие липид - белок совместно с гидрофобными связями и обеспечивает такую стабилизацию мембранной структуры. Криддл и сотрудники выделили мономерную форму, которую они назвали структурным белком митохондриальной мембраны. При нейтральном рН структурный белок находится в полимерной форме и не растворим в воде. Мономерная форма имеет молекулярный вес около 22000, но тенденция к полимеризации нарушает точность седиментационных и электрофоретических исследований. Структурный белок способен соединяться с чистыми цитохромами а, Ь, и ее образованием растворимых в воде комплексов в молярном отношении 1:1, причем условия этого взаимодействия для каждого случая различны. Предполагается, что в таких комплексах образуются преимущественно гидрофобные связи. Далее, оказалось, что структурный белок соединяется с фосфолипидами. Таким образом, структурный белок способен к взаимодействию с двумя другими основными молекулярными элементами мембраны - с переносчиками электронов и с фосфолипидами. Склонность цитохромов, флавопротеидов и структурного белка к существованию в мономерной и полимерной формах указывает на выраженную тенденцию этих молекул к образованию очень

  • 286. Биологическая сущность микоризы
    Курсовой проект пополнение в коллекции 06.05.2010

    Всходы многих видов лесных деревьев, выращенные в стерильном питательном растворе, а затем перенесенные в луговую почву, будут плохо расти и даже погибать от недостатка пищи, хотя субстрат достаточно богат ею. Однако если добавить к почве вокруг корней сеянцев совсем немного (0,1 % по объёму) лесной почвы, содержащей соответствующие грибы, рост нормализуется. Это обусловлено микоризой ("грибокорнем"), тесным взаимовыгодным симбиозом корней и грибов. Микориза известна в большинстве групп сосудистых растений. Всего несколько семейств цветковых не образуют её или образуют очень редко, например крестоцветные и осоковые. Многие растения могут нормально развиваться и без микоризы при хорошем обеспечении незаменимыми элементами, особенно фосфором. Однако при ограниченной доступности этих минеральных веществ они растут без нее плохо или погибают. Участие микоризы в прямом транспорте фосфора из почвы в корни доказано экспериментально. В свою очередь растения снабжают симбиотические грибы углеводами. Гриб помогает растению усваивать минеральные соли и воду, а сам получает от него органические вещества, которые растения синтезируют из неорганических веществ. Микориза увеличивает способность корней поглощать вещества из почвы в тысячи (!) раз. С грибами вступают в симбиоз 80-98% (по разным источникам) наземных растений: деревья, кустарники, травы. Например, в итоге многолетней работы (Селиванов И.А. "Микосимбиотрофизм как форма консортивных связей в растительном покрове Советского Союза". М., 1981) было изучено 3449 видов (не экземпляров!) растений в разных климатических зонах.78% из них оказались микотрофными (т.е. те, которые могут образовывать микоризу): деревья, травы, кустарники. Иначе говоря, три четверти растительного мира питаются при помощи грибов!Дубы, сосны и многие другие растения без микоризы жить просто не способны. Степи, луга, леса в таком их виде, который для нас привычен, не смогли бы существовать без микоризы. Точно так же без микоризы большинство шляпочных грибов не смогло бы образовывать плодовые тела: на это просто не хватило бы сил. Редкое исключение из правила - уже упомянутые шампиньоны, которые микоризу не образуют. И всё-таки микоризные шляпочные грибы можно вырастить на выбранном месте - но не на грядке, а у подходящего дерева. Большое количество микоризных грибов могут жить не с одной, а со многими древесными породами. Например, подосиновик образует микоризу не только с осиной, но и с березой, а белый гриб сожительствует почти с пятью - десятью деревьями (рис. 5.1)

  • 287. Биологическая фиксация азота
    Информация пополнение в коллекции 09.12.2008

    Клубеньковые бактерии более экономно используют энергию, необходимую для фиксации азота, затрагивая 3-4 г углеводов на 1 г азота, в то время как свободноживущие азотфиксирующие бактерии затрачивают 50 - 100 и более граммов на фиксацию 1 г азота. Это связано с тем, что у
    свободноживущих азотфиксаторов фиксация азота происходит в процессе их роста, и потому большое количество энергии потребляется на этот рост. Кроме того, в целях создания благоприятных условий для активности нитрогеназы - фермента, участвующего в фиксации азота, для снижения парциального давления кислорода усиливается дыхание, что связано с затратой энергии. Эти расходы энергии отсутствуют у клубеньковых бактерий, поскольку фиксация азота происходит в бактероидах, клетках, прекративших рост, а внутри клубеньков создаются благоприятные условия
    для активности нитрогеназы, в том числе сниженное содержание кислорода. Очень существенно то, что фиксируемый клубеньковыми бактериями азот на 90 - 95% передается бобовым растениям. Бобовые, получая связанный азот от клубеньковых бактерий, не зависят или мало зависят от обеспечения минеральным азотом почвы и потому могут успешно произрастать совместно
    с другими растениями на почвах, бедных доступными формами азота.Количество азота, фиксируемого клубеньковыми бактериями бобовых, сильно варьирует от фитоценоза к фитоценозу, а в пределах конкретных фитоценозов может изменяться от года к году. Оно определяется участием
    бобовых в фитоценозах, условиями среды и эффективностью соответствующих рас бактерий. Для некоторых лугов в Новой Зеландии с травостоями, где преобладает клевер, отмечена фиксация азотом до 450 - 550 кг/га.

  • 288. Биологическая функция нуклеиновых кислот
    Курсовой проект пополнение в коллекции 24.03.2011

    Небольшая молекулярная масса, наличие достаточно большого количества (до 10 %) минорных оснований, которые являются прекрасными маркерами, существенно облегчают проблему определения нуклеотидной последовательности тРНК. В 1965 г. Р. Холли и его сотрудники установили полную нуклеотидную последовательность аланиновой тРНК дрожжей; в 1967 г. А.А. Баев и сотрудники установили последовательность нуклеотидов валиновой тРНК дрожжей. А. Рич и др. (19751977 гг.) провели полную расшифровку пространственной структуры фенилаланиновой тРНК на основе рентгенограмм с разрешением до 0,4 нм. Вторичная структура тРНК в плоском изображении имеет вид клеверного листа (рис. 3). тРНК содержит 4 двухцепочечных спиральных участка, 3 из которых являются "шпильками", несущими петли из неспаренных нуклеотидов; 3'- и 5'-концы полинуклеотидной цепи объединены в наиболее длинный спиральный участок, образованный водородными связями между азотистыми основаниями и завершающийся неспаренным тринуклеотидом ССА, Кроме четырех основных ветвей, более длинные тРНК содержат короткую пятую, или дополнительную, ветвь. Две из основных ветвей непосредственно обеспечивают функцию тРНК как адалтора (между двадцатибуквенным кодом белков и четырехбуквенным кодом нуклеиновых кислот). Антикодоновая ветвь имеет антикодон, представляющий собой специфический триплет нуклеотидов, комплементарный кодону мРНК и способный образовывать с ним пары оснований. Акцепторная ветвь присоединяет специфическую аминокислоту за счет образования эфирной связи между ее карбоксильной группой и гидроксильной группой 3'-концевого остатка аденина в тРНК, Две другие главные ветви тРНК называются дигидроуридиловая ветвь и ТС-ветвъ. Первая содержит необычный нуклеозид дигидроуридин, а вторая нуклеозиды псевдоуридин () и риботимидин (Т), обычно не присутствующие в составе РНК.

  • 289. Биологическая характеристика окуня обыкновенного (Perca fluviatilis, l.) на реке Кочеты
    Курсовой проект пополнение в коллекции 11.12.2010

     

    1. (А) Берг Л. С. Рыбы пресных вод СССР и сопредельных стран, часть 2, М.: Пищепромиздат, 1949, С. 1932 1939.
    2. (Б) Берг Л. С., Богданов А. С. Промысловые рыбы СССР, Пищепромиздат, 1949.
    3. Бровкина Е. Т. , Сивоглазов И. В. М.: Дрофа, 2004. Рыбы наших водоёмов. 105с.
    4. Емтыль М. Х. , Иваненко А. М. Рыбы Юго-запада России: Учебное пособие. Краснодар: КубГУ,2002. 340 с.
    5. Лакин Г. Ф. Биометрия. М.: Высшая школа, 1973. 343 с.
    6. Лотышев И. П. География Кубани. Майкоп,2006. 293с.
    7. Москул Г. А. Рыбы водоёмов бассейна Кубани: определитель. Краснодар: КубГУ, 1998, 177 с.
    8. Москул Г. А. Современное состояние и перспективы рыбохозяйственного освоения Крюковского и Варнавинского водохранилищ: Сборник научных трудов ГОСНИОРХ, №251, 1986.
    9. Москул Г. А. , Москул Н.Г. Экология размножения и развития пресноводных рыб: Методические указания. Краснодар: КубГУ, 2007, 46 с.
    10. Никольский Г.В. Частная ихтиология. М.:Высшая школа, 1971. 471 с.
    11. Правдин И. Ф. Руководство по изучению рыб. М. Пищевая промышленность, 1966. 375 с.
    12. Пряхин Ю. В. , Шкицкий В. А. Методы рыбохозяйственных исследований: Учебное пособие. Ростов-на-Дону: Издательство ЮНЦ РАН, 2008. 256 с.
    13. Плотников Г. К. Фауна позвоночных Краснодарского края. Краснодар: ООО Крайбибколлектор, 2000, 233 с.
    14. Попова О.А. Питание и пищевые взаимоотношения судака, окуня и ерша в водоёмах разных широт. //Изменчивость рыб пресноводных экосистем. М.: Наука, 1979, С. 95-112.
    15. Решетников Ю.С., Богуцкая Н.Г., Васильева Е.Д., Дорофеева Е.А., Насека А.М., Попова О.А., Савваитова К.А., Сиделева В.Г., Соколов Л.И. Список рыбообразных и рыб пресных вод России //Вопросы ихтиологии. 1997, Т. 37, вып. 6, С. 723-771.
    16. Троицкий С.К. Рыбы Краснодарского края/ С.К. Троицкий. Краснодар: Краевое книгоиздательство, 1948. 80 с.
    17. Троицкий С.К., Цуникова Е.П. Рыбы бассейнов Нижнего Дона и Кубани. Руководство по определению видов/ С.К. Троицкий, Е.П. Цуникова. - Ростов-на-Дону:Ростовское книжное изд-во, 1988. 112 с.
    18. Б.И. Черфас Рыбоводство в естественных водоемах. Москва 1956.
    19. http://jiggingsecret.ru
    20. http://world-aquarium.ru
    21. www.MaxLv.ru
    22. www.google.com
  • 290. Биологически активные вещества
    Информация пополнение в коллекции 12.01.2009

    Имеются два основных витамина D2 и D 3 ; D2 ( С28Н44О) образуется из провитамина эргостерона, распространенного в растениях. D3 (С27Н44О) из провитамина животных тканей 7 дегидрохолестерина. Витамины D2 и D3 одинаково хорошо используются человеком и млекопитающими; птицы усваивают витамин D 2 в 30-60 раз хуже, чем D3. Переход провитаминов в витамины происходит в коже человека и животных под воздействием ультрафиолетовых лучей при ярком солнечном освещении или при облучении кварцевой лампой. Образовавшейся в коже витамин разносится затем по всему телу. Свойством провитаминов превращаться в витамины под действием лучистой энергии широко пользуются при промышленном изготовлении препаратов витаминов. Оба витамина медленно окисляются на воздухе, быстро на свету; при нагоевании до 130-160 гр. Они инактивируются даже в отсудствии кислорода. Из естественных продуктов значительные количества витаминов ( в форме D3 ) содержит лишь рыбий жир ; небольшие количества витаминов находятся в яичном желтке и летнем сливочном масле; остальные животные продукты бедны витамином; в растительных продуктах готового витамина, как правило, совсем нет. При промышленном производстве витамин D2 получают путем облучения эргостерина, извлекаемого из дрожжей или мицелия грибов пенициллиума. D3 - главным образом для нужд птицеводства- изготовляют из морский мидий. Ввиду ограниченного распространения витамина D и недостаточности инсоляции в осенне-зимний сезон необходимо широко применять вето время промышленные препараты витамина, особенно для детей.

  • 291. Биологически активные добавки и их роль в укреплении здоровья человека
    Информация пополнение в коллекции 09.12.2008

    Процедура экспертизы и гигиенической сертификации проводится в соответствии с приказом МЗ РФ №117 от 15.04.97 «О порядке экспертизы и гигиенической сертификации биологически активных добавок к пище» Центром гигиенической сертификации пищевой продукции Департамента санэпиднадзора МЗ РФ на базе Института питания РАМН (ЦГСПП), а также другими органами и учреждениями, аккредитованными Департаментом государственного санитарно-эпидемического надзора МЗ РФ. Экспертиза БАД включает следующие этапы: оценка сопроводительной документации, характеризующей данную продукцию; определение потребности в проведении необходимых исследований; проведение санитарно-химических, микробиологических или других видов исследований; экспериментальные исследования физиологических, метаболических и токсикологических эффектов, подтверждающих заявленный профиль БАД; в отдельных случаях клинический анализ эффективности; комплексная оценка результатов с учётом полученных в ходе исследований данных; оформление регистрационного удостоверения на БАД, присвоение номера, включение в реестр. Таким образом, если БАД прошла государственную регистрацию, можно быть уверенным, что она:

    1. Не содержит сильнодействующих и ядовитых веществ, а также растений, на которые отсутствует нормативная документация, либо которые не употребляются в пищу.
    2. Не содержит растительное и животное сырье, полученное с применением методов генной инженерии, за исключением сырья, на которое получено специальное разрешение МЗ.
    3. В качестве сырья не были использованы материалы риска, такие как головной и спинной мозг некоторых видов скота, селезенка овец и коз и т.д. (риск передачи прионных инфекций).
    4. Содержание тяжелых металлов, пестицидов, радионуклидов и микробиологические показатели находятся в пределах нормы.
    5. Для парафармацевтиков в обязательном порядке проводятся экспериментальные и клинические исследования, подтверждающие их эффективность и безопасность. [5]
  • 292. Биологически активные добавки к пище (БАД)
    Информация пополнение в коллекции 07.11.2011

    Биологически активные добавки к пище (БАД) если рассматривать их в глобальном аспекте - это накопленные громадным опытом народов всех времен знания целебных свойств растений, объектов животного происхождения и минерального сырья. Еще до нашей эры в странах Востока сложились системы профилактики и терапии, основанные на использовании продуктов из растительного, животного и минерального сырья. Эти методы использовали Гиппократ, Гален, Авиценна и многие другие. Современные технологии позволили выделить из природного сырья чистые вещества и их комплексы, что позволило добиться усиления их эффекта воздействия. В последнее время появилась новая область знаний - фармаконутрициология, которая является пограничной между наукой о питании и фармакологией. Выдающийся отечественный ученый академик А.А. Покровский отмечал, что "…пищу следует рассматривать не только как источник энергии и пластических веществ, но и как весьма сложный фармакологический комплекс". В нашей стране это направление относительно ново, и несмотря на то, что ежегодно проводится множество конгрессов, конференций и симпозиумов, посвященных БАД, они остаются предметом жарких споров в медицинских кругах (1).

  • 293. Биологически активные пищевые добавки и здоровье
    Информация пополнение в коллекции 27.06.2011

    oудовлетворение физиологических потребностей в пищевых веществах больного человека, уменьшив при этом нагрузку на поражённые патологическим процессом метаболические звенья. Так, включение в диету больных сахарным диабетом топинамбура - основного источника фруктозы позволяет удовлетворять потребности организма в углеводах без риска развития гипергликемии. При некоторых врождённых заболеваниях, связанных с недостаточностью ферментных систем, результатом чего является непереносимость ряда продуктов. Например, при фенилкетонурии организм не вырабатывает фермент фенилаланингидроксилазу, катализирующую превращение аминокислоты фенилаланина в тирозин, что приводит к накоплению фенилаланина в тканях и развитию умственной недостаточности. Для предотвращения этого необходимо исключить из диеты продукты, содержащие фенилаланин, то есть применять БАД к пище, содержащей комплекс аминокислот без фенилаланина. Другим примером может служить применение к пище БАД, содержащих комплекс витаминов и минеральных солей, больными глютеновой энтеропатией, недостаток которых связан с исключением из диеты этих больных основных источников витаминов группы В-продуктов из пшеницы, ржи, овса.

  • 294. Биологически мембраны
    Информация пополнение в коллекции 12.01.2009

    1.4. Транспорт глюкозы. Транспорт глюкозы может происходить по типу как облегченной диффузии, так и активного транспорта, причем в первом случае он протекает как унипорт, во втором как симпорт. Глюкоза может транспортироваться в эритроциты путем облегченной диффузии. Константа Михаэлиса (Кm) для транспорта глюкозы в эритроциты составляет приблизительно 1,5 ммоль/л (то есть при этой концентрации глюкозы около 50% имеющихся молекул пермеазы будет связано с молекулами глюкозы). Поскольку концентрация глюкозы в крови человека составляет 4-6 ммоль/л, поглощение ее эритроцитами происходит практически с максимальной скоростью. Специфичность пермеазы проявляется уже в том, что L-изомер почти не транспортируется в эритроциты в отличие от D-галактозы и D-маннозы, но для достижения полунасыщения транспортной системы требуются более высокие их концентрации. Оказавшись внутри клетки, глюкоза подвергается фосфорилированию и более не способна покинуть клетку. Пермеазу для глюкозы называют также D-гексозной пермеазой. Она представляет собой интегральный мембранный белок с молекулярной массой 45кД.

  • 295. Биологические и географические особенности миграции наземных животных
    Курсовой проект пополнение в коллекции 12.01.2009

    У животных существуют периодические миграции, их еще называют выселением. К периодическим выселениям миграциям относят такие, которые представляют собой массовый уход животных из мест размножения без последующего возвращения на места прежнего обитания. Согласно данным науки, такие выселения вызываются резким ухудшением жизненных условий, а также бескормицей, которая связана с возникающей высокой плотностью населения вида, лесными и степными пожарами, сильными засухами, наводнениями, чрезмерным многоснежьем, и другими причинами. Отсюда видно, что многочисленные обстоятельства могут вызвать перемещения массы зверей на большие расстояния. Инвазии перемещения животных за пределы своей родины. Такие перемещения отличаются от истинных миграций своей нерегулярностью и большими интервалами между последовательными инвазиями. Иногда их рассматривают как начальные этапы формирования настоящих миграций, возникающих из взрывоподобных расселений "эмиграций". Инвазия подобна предохранительному клапану, срабатывающему при избыточной плотности населения. Само по себе это благоприятствует существованию вида лишь косвенным образом. В нормальных естественных условиях популяционные процессы находятся в равновесии, и рост численности популяции, влекущий за собой выселение, случается редко. Инвазия представляет собой явление, недостатки которого бросаются в глаза, но которое вместе с тем на протяжении длительного времени дает преимущество, с лихвой перевешивающее недостатки. Типичным примером этих миграций является переселение леммингов и белок. Необратимые периодические миграции свойственны обыкновенным белкам. Они (миграции) возникают быстро в ответ на появившиеся неблагоприятные условия. Миграции начинаются в июле-августе, когда белки начинают питаться семенами и орехами свежего урожая и обнаруживают их недостаток. Миграции продолжаются около 6 месяцев. Белки подчас преодолевают до 500 км и более. Белки мигрируют не кучно, а поодиночке. Странствия белок периодически повторяются через 4-5 лет и сильно влияют на выход пушнины и экономику охотников, промышляющих белку. Скорость белок во время миграций достигает 3-4 км/ч.

  • 296. Биологические молекулы
    Доклад пополнение в коллекции 12.01.2009

    Липиды это нерастворимые в воде органические молекулы. Вы получите правильное представление о липидах, если вообразите капельки жира, плавающие на поверхности бульона. В живых организмах липиды выполняют две важные функции. Один класс молекул фосфолипиды состоят из маленькой головки, содержащей фосфатную группу (атом фосфора, соединенный с четырьмя атомами кислорода), и длинного углеводородного хвоста. Углеводородный хвост этой молекулы гидрофобен, то есть энергетическое состояние молекулы минимально, когда этот хвост находится не в воде. Напротив, фосфатная головка гидрофильна, то есть энергетическое состояние молекулы минимально при контакте головки с водой . Если поместить молекулы фосфолипидов в воду, они будут стремиться достичь минимального энергетического состояния и выстроятся таким образом, что их хвосты окажутся вместе, а головки врозь. Такая двухслойная структура очень стабильна, поскольку головки будут в контакте с водой, но вода будет вытеснена из области, окружающей хвосты молекул. Для перемещения липидным молекулам необходима энергия либо чтобы удалить гидрофильные участки из воды, либо чтобы поместить в воду гидрофобные участки. Из таких липидных двухслойных структур состоят клеточные мембраны и мембраны, разделяющие компоненты клетки. Эти пластичные и прочные молекулы отделяют живое от неживого.

  • 297. Биологические основы выращивания белуги (Huso huso)
    Курсовой проект пополнение в коллекции 17.09.2010

     

    1. Анисимова И.М., Лавровский В.В. Ихтиология. ? Москва. ? изд-во «Высшая школа», 1983. ? 255 с.
    2. Атлас пресноводных рыб России в двух томах. Т1 под редакцией Решетникова Ю.С. М. наука, 2002. 253 с.
    3. Бабушкин Н.Я. 1964. Биология и промысел каспийской белуги // Тр. ВНИРО. Т. 52. Сб.1. М.: с. 183-258.
    4. Бокова Л.И., Гунько А.Ф. опыт использования лиманов для выращивания заводской молоди осетровых в Азовском бассейне // Осетровое хозяйство внутренних водоемов СССР.?1979.? с. 28-29.
    5. Вернидуб М.Ф. Инструкция по определению рыбоводного качества, сбору, оплодотворению, рационализации обесклеивания и инкубации икры и выдерживанию личинок осетровых. ? рукопись, 1952.
    6. Детлаф Т.А., Гинзбург А.С. Зародышевое развитие осетровых рыб (севрюги, осетра и белуги) в связи с вопросами их разведения. ? Москва. ? изд-во Академии наук СССР, 1954.?215 с.
    7. Драгомиров Н.И. Эколого-морфологические особенности личиночного развития белуги HUSO HUSO (L.). // Труду института морфологии животных им. А. Н. Северцова. ? 1961. ? вып. 33. ? с. 72-185.
    8. Захарова Н.А., Хураськин Л.С., Полянинова А.А. 2000. Трофические связи осетровых и каспийского тюленя // Осетровые на рубеже 21 века: Тез. докл. Междунар. конф. Астрахань: Изд-во КаспНИРХа. 54 с.
    9. Иванов А.П. Рыбоводство в естественных водоемах. - М.: Агропромиздат, 1988. - 367 с.
    10. Кокоза А.А., Искусственное воспроизводство осетровых рыб. Моногр.? Астрахань. ? изд-во АГТУ, 2004. ?207 с.
    11. Курс лекций: «Осетровые мирового океана». Для студентов третьего курса специальности «Водные биоресурсы и аквакультура». Л.В. Витвицкая, А.М. Тихомиров, Н.А. Егоров; АГТУАстрахань, 2002.160 с.
    12. Легеза М.И. 1972. Роль абиотических факторов среды при распределении осетровых (сем. Acipenseridae, Pisces) в Каспийском море // Вопр. ихтиологии. Т. 121. Вып.1. С. 13-24.
    13. Методическое указание на тему: Биологические основы акклиматизации. ? Астрахань. ? изд-во АГТУ, 2002.
    14. Мильштейн В.В. Осетроводство.: М. агропромиздат 1982.
    15. Молодцова А.И. Поляникова А.А. Смирнова. А.В. Кормовая база и питание заводской молоди белуги в естественных условиях реки Волги. //Воспроизводство осетровых, лососевых и частиковых рыб: сб. научных трудов ВНИРО. М. 1992 с 100110
    16. Мухачев И.С. Биологические основы рыбоводства: учеб. пособие: Мво. образования и науки. Р. Ф. Тюмень. Гос. университет Тюмень изво. Тюмень гос. унта, 2005 300 с.
    17. Поляникова А.А. Эриксон. Е.П. Питание белуги в Каспийском море в современных условиях // Тез. докл. 6й Всероссийской конфиренции по проблемам промысла. Мурмнск 1996 с. 119120
    18. Понамарев С.В. Гамыгин Е.А., Никоноров С.И. Понамарева Е.Н. Бахарева А.А. Грозеску Ю.Н. Технологии выращивания и кормления объектов аквакультуры юга России. Астрахань: «Нова плюс», 2002
    19. Понамарева Е.Н. Бахарева А.А. Методы стимулирования половых продуктов у рыб различными способами. Астрахань 2001
    20. Понамарева Е.Н. Бахарева А.А. Методы транспортировки икры, спермы, личинок, молоди и производителей рыб. Астрахань 2002
    21. Привезенцев Ю.А. Рыбоводство: учебник для студентов вузов/ Ю.А. Привезенцев, В.А. Власов. М.: Мир, 2004. 456 с.
    22. Рыбы Казахстана.1986. Т. 1. Алма-Ата: Наука. С. 57-71.
    23. Рыбохозяйственные исследования на Каспии: Результат НИР за 2005г Романов А.А., Журавлёва О.Л., Ходоревская Р.П., Левин А.В., Лепилина И.11., Коноплёва И.В., Сафаралиев И.А. Астрахань.: Издво Капнирх. 2006 436 с
    24. Справочник рыбовода по исскуственному разведению промысловых рыб/ под ред. д. б. н. проф. Н.И. КожинаМ. Пищевая пром.1971208 с.
    25. Ходоревская Р.П., Полянинова А.А. 2000. Оценка условий нагула белуги (Huso huso L.) в северо-западной части Северного Каспия // Морские гидробиологические исследования. М.: ВНИРО. С. 205-208.
    26. Черномашенцев. А.П. Мильштейн. В.В. Учебник рыбоводства 1 часть: М. Агропромиздат 1983.
  • 298. Биологические основы выращивания рыбца
    Курсовой проект пополнение в коллекции 12.09.2010

    Проходная и полупроходная стайная рыба, поднимающаяся в реки для размножения. Идёт дважды в году: весной и осенью. Рыбцы осеннего хода зимуют в пресной воде. Рыбцы, обитающие в водохранилищах, идут метать икру во впадающие реки. Половозрелыми сырть и черноморский рыбец становятся в возрасте 4-5 лет, а каспийский рыбец в 3-4 года. На нерест сырть и рыбец поднимаются в реки и мечут икру на перекатах с каменистым, обычно галечным грунтом. Глубина на нерестилищах 0,5-1 м, скорость течения 0,7-0,8 м/с. В юго-западной части Балтийского моря и дельте Терека сырть может нереститься на растительности в небольших заливах и в устье рек. Рыбец Днепровско-Бугского лимана для размножения мигрирует главным образом в Днепр и его рукава. Лучшими нерестилищами для рыбца являются россыпи мелкого камня и ракушечника, образовавшиеся при размыве берегов и заливаемые водой только в период половодья. Эти участки значительную часть лета бывают вне воды, хорошо обсыхают, проветриваются, поэтому на них мало обрастаний и они менее заиленные. Небольшая глубина, относительная прозрачность воды позволяют наблюдать за нерестом с берега или, еще лучше, с лодки. Можно видеть, что готовые или близкие к нересту рыбцы заходят на нерестилище одновременно небольшими группами. Нерест растянут с мая по июль. На севере ареала он начинается позднее, чем на юге. Икра у самок созревает 2-4 порциями. Температурный диапазон, при котором происходит размножение, очень широк- от 12 до 24 С. Самку обычно сопровождают 5-7 самцов. Самки быстро передвигаются, выбирая места, подходящие для откладки икры. В момент икрометания самка становится против течения. Ее голова наклонена вниз, а хвостовой стебель поднят несколько вверх. Двигая хвостом, она медленно продвигается вперед и при этом выпускает икру. Находящиеся по бокам самцы поливают икру молоками. Нерест рыбца наиболее активно протекает в утренние (с 5 до 12) и вечерние (с 16 до 24) часы. С наступлением ночи нерест прекращается, рыбец отходит от берегов. На нерестилищах самцов гораздо больше, нежели самок. Во время нереста рыбца на тех же местах держатся стайки уклей, пескарей, бычков. Судя по наблюдениям, они поедают только ту икру, которая задерживается на верхней стороне камней. Обычно икра заносится под камни. Часто на стороне нерестилища, обращенной к течению, икра размещается плотным слоем, наподобие дерна. Подобные мощные кладки икры образуются благодаря значительным концентрациям производителей, а также потому, что икра от нескольких самок заносится в одни и те же ямки и щели. Скопления икры лежат рыхло и хорошо промываются водой. Икра выметывается и созревает порциями, чаще наблюдается 3 порции икры, но у самок, нерестующих первый раз, бывает 2 порции. Возможно, что у старых самок число порций икры также сокращается. Так, у самок восьмилетнего возраста и старше можно обнаружить только одну порцию икры или они и вовсе пропускают нерест. В р. Дон рыбец заходит в течение круглого года, особенно заметен его ход с осени до поздней весны, но основной ход весной (Рыжов, 1987).

  • 299. Биологические основы выращивания сазана (Cyprinus carpio L)
    Курсовой проект пополнение в коллекции 10.09.2010

    Посадочный материал укладывают в фанерные, жестяные ящики с поперечными планками размером 60x75x10 или 55x55x10см. Ящики устанавливают один на другой по 7-8шт. в стопке. Дно выстилают мхом, марлевыми тюфячками, матами из рогоза и камыша. Во время полета рыбу орошают охлажденной водой. Погрузка рыбы длится быстрее не более 15-20 минут, а разгрузка не более 10. При перевозке в живорыбных вагонах в течении до 12 суток в один вагон загружают до 800кг трех и четырехлетков сазана, они хуже переносят перевозку чем белые амуры. Для молоди принята норма 30 тысяч штук на каждую живорыбную машину. В этих условиях при длительности перевозки 10 часов отход не превышает 5%. Сеголетков достигнув веса 15 гр, перевозят в этих машинах при температуре воды 5 -10 0C по норме 5 тысяч штук на каждую. Во время пути необходима постоянная аэрация при помощи компрессора. Рыбы большего веса 500-700г при длительности транспортировки 25 часов перевозятся при температуре 5-8 0C и норме посадки в одну автомашину в количестве 300-400 штук. Широко используют полиэтиленовые пакеты шириной 42-44см. (при толщине пленки 0,1-0,14мм). Для перевозки производителей и вообще крупной рыбы применяют пакеты объемом 50-80л. Для рыб старшего возраста длина пакета увеличивается до 1,35-1,55м. В соответствии с возрастом и условиями перевозки транспортируемой рыбы пакеты изготавливают из разного количества слоев полиэтилена: для личинок двухслойные, для рыб старших возрастов трехслойные. Перед транспортировкой, производителей выдерживают несколько суток без пищи, отмывают в носилках от грязи и слизи и затем загружают в пакеты. Пакеты перевозят в наклонном состоянии под углом в 45 градусов. Нормы загрузки рекомендуются следующие: в автомашине ГАЗ-51-50-60 штук; в автомашине ЗИЛ-150-70-80 штук; в вертолете МИ-4-25-30 штук; в самолете АН-2-до30 штук; в самолете ИЛ-14-до 100 штук. Производителей лучше перевозить осенью при температуре 5-7 0C, весьма нежелательна их транспортировка весной. На выживаемость перевозимой рыбы влияют несколько факторов, основным из которых является содержание кислорода в воде, накопление продуктов жизнедеятельности и свободное пространство. Большое значение также придается качеству и физиологическому состоянию перевозимых объектов. Вода для перевозки рыбы должна быть чистой, прозрачной, без механических и органических примесей. Очень важно, чтобы перевозимая рыба не испытывала резких колебаний температуры. Разница температуры воды, в которой рыба находилась до погрузки и воды, в которой она будет перевозится, не должна превышать 1-2 0C, также как и при выгрузки рыбы. Личинок можно транспортировать через 2-4 суток после выклева, вскоре после заполнения плавательного пузыря воздухом. При загрузке пакетов не допускаются травмированные, слабые и не жизнестойкие личинки, их отбраковывают. Личинки плохо переносят тряску, что имеет место при перевозке их от аэропортов до рыбхозов по плохой дороге, на неприспособленном транспорте. Недопустимы во время перевозке резкие колебания температуры: повышение за пределы 300 и падение ниже 150. Пакеты укладывают в картонные коробки размером 33x60x33см. Или 40x65x40см, предварительно выстланные хлорвиниловой пленкой, завязывают все это веревкой диаметром не менее 1см. Вес коробки 20кг. При длительной перевозке и высокой температуре воду меняют и добавляют новую порцию кислорода. Кроме пакетов, для перевозки личинок сазана используют канистры, загрузка в них в 2 раза быстрее.

  • 300. Биологические основы выращивания сёмги
    Курсовой проект пополнение в коллекции 08.09.2010

    Зрелые икринки лосося отличаются крупными размерами, наибольшими среди всех лососевых, который по данным Рыжкова (1976), у озерного лосося Ладоги достигает 7,9мм. Вес икринки различен и варьирует в больших пределах. У семги он составляет от 80 до 150 мг, у балтийского лосося-100-210 мг, что зависит от количества питательного материала, накопленного в период оогенеза. Значительный объем желтка обуславливает меньшую степень васкуляризации поверхности желточного мешка на одинаковых стадиях развития и наибольшее значение для молоди при переходе на этап смешанного питания. Собственно зародышевой плазмы-цитоплазмы в икринке относительно мало. Вес ее около 1/500 от общего веса икринки. Яйца лосося покрыты оболочкой сложной структуры и состоят из лучистой зоны (zona radiata) и тонкого внешнего гомогенного слоя. В оболочке имеется воронкообразное отверстие (микропиле), через которое в икринку проникает сперматозоид. У яиц, только что отцеженных из полости тела и находящихся в полостной жидкости, оболочка плотно прилегает к желтку и плазме. При попадании яиц в воду у них начинаются сложные митотические деления. Вода проникает под оболочку, последняя отделяется от системы плазма + желток, и между ними образуется перивителлиновое пространство, заполненное жидкостью белкового происхождения. Объем икринки после оводнения увеличивается на 10-15%. Одновременно с набуханием происходит перемещение жировых включений желтка и цитоплазмы к одному полюсу, а питательного желтка к другому биполярная дифференцировка. Сформировавшийся зародышевый диск, благодаря скоплению под ним жировых капель, располагается на верхнем анимальном полюсе, где перивителлиновое пространство шире. Микропиле закрывается, оболочка затвердевает. Все перечисленные преобразования характерны как для оплодотворенных, так и для неоплодотворенных яиц.