Междисциплинарный подход к изучению сложных систем опасных природных процессов

Вид материалаАвтореферат диссертации

Содержание


Концептуальные основы междисциплинарной методологии анализа самоорганизации сложных систем ОПП.
IY. Общесистемный принцип целостности.
Подобный материал:
1   2   3   4   5
Сценарий эволюции тропического циклона (ТЦ) по структурно-фазовым переходам сводится к смене механизмов разгона вращения циклона (структурно-фазовых переходов) по следующей схеме [Иванов О.П., 2008]: 1) заложение зоны депрессии Р; 2) развитие вращения с достаточным волнением для возникновения дисперсионной смазки (капельки воды до 20 микрон, срываемые с гребешков волн), снижающей турбулентное трение, и одновременно возник восходящий вертикальный отток с V<10 м/с; 3) 1-я фаза разгона по вертикали за счет выделения латентного тепла пара 540 кал/г на высоте Н=300-500 м и Т=110 С (точка росы); 4) 2-я фаза разгона на Н=2-3 км за счет охлаждения капель и выделения латентного тепла (100 кал/г) и их замерзания (80 кал/г); 5) 3-я фаза разгона при переходе на вертикальный спирально-вихревой когерентный энергообмен; 6) разгон за счет генерации электромагнитных полей; 7) фаза развития ТЦ с возникновением спирально-конвективных структур, типа «тепловых башен» - формирование устойчивых бассейнов притяжения в системе.

Сценарий эволюции торнадо по структурно-фазовым переходам содержит следующие фазовые переходы: 1) электрическое структурирование грозового супероблака; 2) дифференциация зоны отрицательного или положительного заряда (Н = 4 – 8 км) на отдельные бассейны притяжения; 3) возникновение отдельной вращающейся зоны в среде заряда и ее кумуляция к оси вращения; 4) движение вращающейся кумулятивно-диссипативной зоны вниз; 5) контакт с поверхностью и резкое усиление вращения за счет электростатической пыли, визуализация зоны контакта; 6) усиление магнитного поля и разделение зарядов за счет нарушения нейтральности; 7) взрывное ускорение вращения.

ВЫВОДЫ

1.Точки бифуркационных или структурно-фазовых переходов являются ключевыми, так как в них гармонизируются адаптивность и динамическая устойчивость сложной системы в процессе эволюции при изменяющихся внешних условиях получения энергии.

2. В связи с тем, что современная теория динамических систем рассматривает в основном только модели перехода к хаосу и не включает в систему эволюционных уравнений параметры самоорганизации системы для выхода на устойчивую траекторию развития, как это происходит в реальности, то предлагаемый нами алгоритм дает первую возможность оценки реалий такого перехода за счет формализованных понятий адаптивности и устойчивости.

3. Эволюция сложных систем, включая ОПП, – происходит иерархически путем последовательного усложнения структуры системы.

4. Иерархичность возникает в точке бифуркации при достижении системой неравновесного состояния и скачкообразного перехода на новую равновесную траекторию развития.

5. Скачкообразность перехода реализуется за счет смены механизмов развития или параметров порядка.

6. Кривая аппроксимации структурно-фазовых переходов имеет степенной вид, характерна идентичность сценариев эволюции в диссипативном и кумулятивном вариантах.

7. Последовательность смены параметров порядка подчиняется также и фрактальным закономерностям.

8. Сопоставление диаграмм и сценариев эволюции позволяет разработать основные принципы эволюции (см. главу 5).

9) С позиций нового эволюционного подхода принципиально важным является знание наиболее кризисных зон структурно-фазовых переходов. Именно в них, в условиях крайней неравновесности, появляется возможность малыми энергетическими воздействиями изменить траекторию, темп и конечную цель эволюции различных ОПП, не допуская их развития до экстремальных состояний, когда они становятся опасными. Знание специфики энергетической сущности фазовых переходов системы – это знание функциональной значимости «акупунктурных» точек эволюционного процесса, позволяющее управлять им с минимальными энергетическими затратами в целях превентивной защиты.

10) При моделировании сложных эволюционирующих систем нужно использовать системы уравнений, учитывающие усложнение систем за счет смены механизмов фазовых переходов или параметров порядка. Например, последовательное использование уравнений термодинамики, газодинамики и электродинамики с применением аргументов запаздывания для описания ТЦ.

Защищаемое положение №2. Доказано, что основой энергетической обеспечения процесса эволюции сложных систем ОПП являются взаимодействия между системами и с окружающей средой. Показано, что взаимодействия базируются на общих принципах и отражаются на внутренних (нелинейность, самоорганизация), внешних (формы) и пограничных (фликкер-шумы, фрактальность, автоволновые явления) состояниях систем-мишеней. Установлена применимость фрактального анализа, фликкер-шумов и универсального алгоритма для оценки степени взаимодействий и неравновесности состояний систем. Сформулированы принципы и признаки этих взаимодействий.

Наиболее полно изучены фундаментальные физические, химические и биологические взаимодействия. Анализ социальных взаимодействий только начинается. Исследования взаимодействий сложных природных систем до сих пор не проводились. Для простоты анализа предложена логическая схема обобщенного анализа взаимодействий сложных систем. Как показано в работах [Иванов О.П., 2000, 2008; Иванов О.П., Высикайло Ф.И., 2005, 2007] при взаимодействиях системы-диссипаторы обеспечивают энергией системы-мишени, которые, в зависимости от получаемого количества энергии, могут аккумулировать, трансформировать или даже диссипировать энергию.

Система - диссипатор всегда обладает большей энергией по сравнению с ситемой-мишенью (следует из свойств индивидуальности и иерархии сложных систем). Она может воздействовать на систему-мишень дистантным способом (электромагнитное, корпускулярное излучение и гравитационное воздействие) или контактным способом (столкновение воздушных масс, литосферных плит, метеороидов, склоновая и береговая эрозии и т.д.). Воздействие может быть периодическим (11-летний солнечный ритм) и стохастическим (вспышечная деятельность на Солнце). Система-диссипатор может выполнять ритмообразующая роль (навязывать ритм) для соподчиненной системы, модифицирующую роль (изменение подсистем или системы) и разрушительную роль (частичное или полное разрушение системы).

Система - мишень обладает свойствами: 1) приема энергии (контактно или дистантно), 2) аккумуляции ее внутри или в пограничной подсистеме, 3) перераспределения энергии внутри системы, 4) вхождения в неравновесные состояния параметрически или объемно и 5) излучения избытков полученной и переработанной энергии диссипативно или концентрированно (кумулятивно-диссипативно) [Иванов О.П., 2000].

Взаимодействия сложных систем со средой рассматривается отдельно, ибо среда в этом случае становится энергетически активной и интенсивность взаимодействий определяется типом аттрактора и механизмом накачки энергии, например с помощью автоволновых процессов.

Исходя из рассмотренных специфик взаимодействий сформулированы принципы взаимодействия сложных систем и признаки их взаимодействий.

Признаки взаимодействий сложных систем характеризуют качественную сторону процесса. Их можно разделить на несколько групп: внутрисистемные (самоорганизация структурирования, нелинейная динамика систем, формы систем), пограничные (состояние зон взаимодействия), смешанные или связанные с окружающей средой, последовательные или каскадные (характер передачи взаимодействия) и разрушающие (уровень взаимодействия).

В работе дан анализ всех групп признаков взаимодействий. Детально рассмотрено влияние нелинейности процессов, нелинейного резонанса и обсуждена проблема возникновения солитонов (волн-кепроулеров в океане). Особое внимание обращено на возможности контактных способов передачи энергии и специфику пограничных неравновесных зон.

Наличие в системе фликкер-шума означает возможность гигантских флуктуаций, т.е. внутренне присущую системе склонность к катастрофам. Это

позволяет предположить, что она находится в окрестности критической точки,

или точки бифуркации, где обычно и происходят такие явления.

Возможности фрактального анализа апробированы на примере расчета фрактальности береговой линии оз. Байкал. Показано, что дробная размерность свидетельствует о двух обстоятельствах: 1) это результат взаимодействия системы берега и водной системы, при этом волновое воздействие на океанах сильнее, чем в озерах. 2) это количественная характеристика степени устойчивости и адаптивности береговой системы; скалистые берега более устойчивы и, следовательно, больше локально изрезаны и их фрактальная размерность выше [Иванов О.П., Оксогоев А.А., 2008].

Наиболее ярким представителем контактного способа передачи энергии служат прямые столкновения систем. Например, при воздействии метеороидов с поверхностью Земли вся кинетическая энергия в доли секунды переходит в тепловую энергию взрыва с последующим образованием структуры метеоритного кратера [Иванов О.П., Хрянина Л.П., 1977]. Столкновение разнотемпературных воздушных масс приводит к образованию атмосферных фронтов и соответственно к сильной квазивертикальной конвекции в виде мощных грозовых структур [Мазур И.И., Иванов О.П., 2004]. Явления эрозии (склоновой, речной, береговой и т.д.) тоже результат контактного взаимодействия различных процессов.

Автоволновые процессы являются самым эффективным смешанным контактным способом энергетической накачки ОПП (с цилиндрической осью вращения) при взаимодействиях с окружающей средой (пожары, ТЦ, торнадо, молнии и т.д.). Именно спирально автоволновые процессы ответственны за динамическую устойчивость вихревых образований типа циклонов, торнадо, смерчей. Обсуждены проблемы моделирования таких явлений.

Для случая каскадных типов взаимодействий и каскадной передачи энергии рассмотрена задача о передаче энергии упругих колебаний от очага землетрясения к поверхности [Иванов О.П., Иванова В.С., 2003].

Важнейшие показатели свойств грунта – радиусы изосейст. Изменение радиуса изосейст характеризует степень изменения сейсмического воздействия с расстоянием от эпицентра и может служить мерой устойчивости (реакции) грунта [Иванов О.П., Иванова В.С.]. Универсальный алгоритм, предложенный в главе 2, можно модифицировать применительно к сейсмическим процессам в виде:

r*n+1 / r*n =  i1/m (15)

где r – радиусы изосейст, а  i – степень устойчивости.

Алгоритм опробован для 15 крупных землетрясений на территории России. Полученные результаты позволяют дать количественную характеристику как понятию изосейст, так и устойчивости грунтов. Одновременно с помощью оценки адаптивности можно оценить справедливость субъективного трассирования изосейст.

Передача энергии каскадным способом в разнородных средах зачастую вызывает различные «каскадные» катастрофы. Например, землетрясение может вызвать сход оползней, лавин, обвалов. Предложенный алгоритм позволяет производить оценки риска для таких ситуаций за счет нормирования территории по сотрясаемости (адаптации) грунтов от предполагаемых сейсмовоздействий.

Защищаемое положение №3. Впервые показано, что достижение экстремальных фаз эволюции ОПП управляется обобщенными законами и принципами кумуляции силовых и потенциальных полей с образованием конечного ряда кумулятивно-диссипативных форм и структур. Доказано, что специфика форм экстремальных фаз ОПП является прогностическим признаком крайне неравновесных состояний систем. Установлено, что процессы вращения вызывают кумуляцию вещества и энергии и, как следствие, максимизацию углового момента инерции системы.

Из физики плазмы известно, что концентрация какого-либо параметра наиболее эффективно происходит в направлении градиента энергетического перепада и тем самым минимизируются время переноса энергии и энергозатраты на перенос энергомассовых потоков. Этому же принципу отвечает закон Ферма, согласно которому, распространение упругих колебаний в сплошной среде идет по пути минимального времени прохождения. Поэтому волны с глубиной становятся рефрагированными, что минимизирует время их прохождения в среде, так как с глубиной плотность среды возрастает и увеличивается скорость прохождения упругих волн [Иванов О.П., Облогина Т.И. и др., 1972, 1976].

Для анализа высокоэнергетичных процессов нами предложена следующая терминология. Кумуляцияэто концентрация в малом объеме силы, энергии, плотности или другого физического параметра, если под малым объемом понимать структуру, удерживающую эту концентрацию, а под концентрацией понимать нелинейное и закономерное повышение плотности любой физической величины к оси вращения или центру фокусирования.

Кумулятивно-диссипативный процесс - это процесс концентрированной диссипации энергии из локальных зон сложной системы в виде структурированных потоков. Основу явлений кумуляции составляют законы кумуляции в силовых и потенциальных полях и процессы фокусировки, создающие типовые формы кумуляции, известные из физики плазмы: плоскостная, цилиндрическая, сферическая и коническая (Высикайло Ф.И., 2003). Кумулятивная эволюция уменьшает число свобод. При сферической кумуляции создается две степени свободы: плоскость вращения и ортогональная к ней ось вращения (галактики, черные дыры) (рис.4).



Рис. 4. Схемы формирования симметрий и свобод в случае сферического (слева) и

цилиндрического аттракторов (справа).

При цилиндрической кумуляции в ТЦ образуется три степени свободы:

1) плоскость спиральной фокусировки у поверхности воды, 2) плоскость потоков

расфокусированных у тропопаузы, 3) зона у оси вращения (рис.4, правый).

У оси вращения резко нелинейно растут плотности газовой среды, скорости

вращения, температуры, плотности плазменной составляющей (рис.5, левый),

возникают взрывные (Высикайло Ф.И., 2003), а не диффузионные профили

кумуляции (рис.5, правый), возможно появление квазистрат (рис 5, средний).



Рис.5. Специфика распределения параметров в условиях вращения.

Вращение максимизирует угловой момент инерции. На примере выполненного расчета момента инерции не дифференцированной и дифференцированной Земли показано, что дифференциация в условиях вращения приводит к увеличению углового момента инерции на величину 15,091036 кгм2.

Спектр динамических процессов ОПП разнообразен и включает мощную конвекцию, сильную турбулентность, вихревые и спирально-вихревые процессы с соответствующими структурами.

В диссертации сформулированы основные принципы возникновения регулярных кумулятивно-диссипативных систем ОПП. Определена роль среды, введено понятие нормальной плотности обобщенного энергомассового потока, характерной частоты, характерных размеров, по которым диссипативные системы макроквантуются в пространстве и образуют кумулятивные формы и структуры.

Защищаемое положение №4. Впервые разработана основа новой естественнонаучной методологии комплексного междисциплинарного системного анализа возникновения, эволюции и проявления ОПП как сложных систем. Методология основана на совокупности принципов и признаков

эволюции, взаимодействия, кумуляции и кумулятивной диссипации, а также

принципа их целостной взаимосвязи.

Методология представлена в виде совокупности трех групп принципов: эволюции, взаимодействия и кумулятивной диссипации. Обобщающий принцип взаимосвязи делает эту совокупность целостной и превращает ее в систему. Признаки и свойства придают методологии прикладные свойства.

^ Концептуальные основы междисциплинарной методологии анализа самоорганизации сложных систем ОПП.

I. Принципы эволюции сложных систем .

1. Мир системен, системы квазиоткрыты и взаимодействуют друг с другом, коэволюционируя по сложности за счет обмена энергией между собой и с окружающей средой. 2. Цель эволюции – развитие по сложности. Это необходимое условие адаптации при неуклонном нарастании системности и вариабельности окружающей среды. 3. Основа эволюции сложных систем - диалектическое единство процессов аккумуляции и диссипации энергии по схеме:

Аккумуляция → Кумуляция → Диссипация→ Кумулятивная диссипация.

4. Процесс эволюции сложных систем дискретен, переходы между усложняющимися состояниями иерархичны, последовательности переходов могут быть аппроксимированы различными степенными закономерностями.

5. Эволюция реализуется на основе принципа минимакса: максимум

аккумуляции системой внешней энергии и минимум ее диссипации (минимум энтропии). Т.е., если допустимо не единственное состояние системы (процесса), а совокупность состояний, то в соответствии с законами сохранения энергии и топологией связей, наложенных на систему (процесс), реализуется то состояние,

которому отвечает максимум накопления внешней энергии и ее минимальное

рассеяние, или минимальный рост энтропии.

II. Принципы взаимодействия сложных систем.

1. Взаимодействия сложных систем осуществляется в соответствии с системной иерархией: а) от надсистемы к подсистеме, б) от сильно неравновесной системы к менее неравновесной, в) последовательно по каскаду событий.

2. Воздействие на системы может быть ритмообразующим, модифицирующим, и поражающим.

3. Воздействие может быть дистантным или контактным. Наиболее эффективный энергообмен происходит при контактном способе передачи энергии. Возможен смешанный или ретрансляционный спирально-автоволновой способ передачи энергии.

3. Системы - мишени способны принимать и кумулировать энергию, входить в неравновесные и кумулятивно-диссипативные состояния, а также испытывать разрушение частично или полностью в зависимости от уровня воздействия поражающих факторов.

Признаки взаимодействия систем:

1. Внутрисистемные признаки определяют состояние системы, ее структурированность и поведение (тип нелинейности, резонансности, неравновесности), степень и характер самоорганизации (кумулятивной, диссипативной и кумулятивно-диссипативной), уровень динамики (конвекция, турбулентность, вихри, струи, страты).

2. Признаки на границах систем характеризуют степень неравновесности, адаптивности и устойчивости границ (самоорганизованная критичность, фликкер-шумы, фрактальность зон взаимодействия).

3. Признаки контактного взаимодействия со средой характеризуют активность среды и способность ее к самоорганизации (взрывные и резонансные явления, волны-солитоны, автоволновой обмен энергией).

4. Каскадность развития экстремальных процессов свидетельствует об иерархичности среды и дискретной адаптивности ее отклика (последовательное развитие солнечно-земных связей, сход лавин и селей от воздействия землетрясений и т.д.).

5. Признаки поражения окружающей среды и систем свидетельствуют о высокоэнергетичном воздействии, превышающем адаптивные возможности.

III. Принципы кумуляции и кумулятивной диссипации.

1. Потенциальные и силовые поля стремятся при достижении неравновесности макроквантоваться (конвекция, разломообразование) с установлением дальнего и ближнего порядка и самоорганизовываться в компактные кумулятивные формы и структуры.

2. Специфика кумуляции определяется видом степенных законов кумуляции, геометрией концентраторов и диссипаторов и типом процессов.

3. Кумулятивные процессы модифицируют среду, упорядочивают структуру возникающих систем, усиливают системные степени свободы, создают гиперскорости распространения энергии.

4. Вращение - всеобщее средство кумуляции энергии в компактные формы (по скорости, плотности, температуре, приведенной силе, приведенному потенциалу, по нарушению нейтральности и т.д.), максимизации углового момента инерции и трансформации кинетической энергии в энергию магнитных полей. Оно минимизирует число степеней свободы (симметрий) сложной системы и задает тип структурирования относительно проявленных симметрий с движением модифицированных струйных потоков вдоль них. Одновременно – это способ спирального автоволнового питания кумулятивного процесса в цилиндрических структурах и поддержания его динамической устойчивости.

^ IY. Общесистемный принцип целостности.

Реализуется в виде обратной кольцевой взаимосвязи всех принципов.

Защищаемое положение №5. На основе нового подхода систематизирована иерархия взаимодействий сложных природных систем и создана генетическая классификация ОПП. Разработаны новые качественные модели возникновения сильных прибрежных землетрясений и тектонических мегацунами, универсальная модель русловых и устьевых наводнений, а также модели цунамигенных и нагонных наводнений. Сформулированы рекомендации по совершенствованию систем прогнозирования, мониторинга и повышения эффективности превентивных мер защиты.

Системная классификация ОПП построена по принципу иерархического

подчинения и взаимодействия от надсистемы к подсистеме и между системами.

Выделена следующая последовательность групп взаимодействий: космогенные ОПП, космогенно – климатические ОПП, атмосферные ОПП, гидрологические и гидрогеологические ОПП, геологические ОПП и метеогенно – биогенные ОПП. Группы ОПП детализированы по убывающим масштабам и соподчинению [Мазур И.И., Иванов О.П., 2004]. Классификация используется в АГЗ МЧС.