Материалы для подготовки к экзамену по химии
Вид материала | Материалы для подготовки |
- Методические материалы проф. Рыбальченко В. С. Для подготовки к интернет экзамену, 218.07kb.
- Материалы для подготовки к итоговой аттестации примерные вопросы для подготовки к экзамену, 73.65kb.
- Материалы для подготовки к кандидатскому экзамену по истории и философии науки Вопросы, 212.43kb.
- К уроку химии, 391.03kb.
- И. А. Пособие для подготовки к единому экзамену. География. М.: Московский лицей, 2005., 9.56kb.
- Программа вступительного экзамена для поступления в магистратуру по профессиональнообразовательной, 85.07kb.
- Методика проведения Итогового контроля on-line Для подготовки к Итоговому контролю, 32.49kb.
- Методические материалы по курсу «история и философия науки» для аспирантов и соискателей, 307.39kb.
- 8. Вопросы для подготовки к экзамену, 83.39kb.
- Методические рекомендации по разработке заданий для школьного и муниципального этапов, 300.53kb.
14. Реакции ионного обмена. Условия их протекания до конца. Отличие реакций ионного обмена от окислительно-восстановительных.
Ответ можно начать с положения о том, что поскольку электролиты в растворах образуют ионы, то реакции в них происходят не между молекулами, а между ионами.
Если смешать растворы двух диссоциирующих веществ, то положительно заряженные ионы (катионы) взаимодействуют с ионами, заряженными отрицательно (анионы).
Это положение следует подтвердить примерами.
1. Одно из образующихся веществ является малодиссоциирующим. Это может быть:
а) осадок
В результате реакции образуется угольная кислота, которая разлагается на газ оксид углерода (IV) и воду.
Все участвующие в реакции вещества находятся в виде ионов. Связывание их с образованием нового вещества не происходит, поэтому реакция в этом случае практически не осуществима.
Приведенные примеры свидетельствуют о том, что необходимыми условиями протекания реакций ионного обмена до конца являются: 1) образование осадка; 2) выделение газа; 3) образование малодиссоциирующих молекул воды.
Естественно, что в ходе ответа можно приводить другие примеры реакций ионного обмена, но при этом важно помнить об использовании таблицы «Растворимость кислот, оснований и солей в воде», из которой видно, какое вещество растворимо, а какое — нет.
Отличительной особенностью реакции ионного обмена от окислительно-восстановительных реакций является то, что они протекают без изменения степеней окисления, участвующих в реакции частиц
^
15. Кислоты. Химические свойства кислот. Взаимодействие с металлами, основными оксидами, основаниями, солями (на примере серной или хлороводородной кислот).
^
17. Амфотерные гидроксиды (на примере гидроксида цинка или алюминия). Взаимодействие их с кислотами, щелочами, разложение при нагревании.
В начале ответа можно разъяснить, что такое ам-фотерность. Амфотерностъ (от греч. amphoteros — и тот и другой, оба) — способность некоторых химических элементов и их соединений (например, оксидов, гидроксидов) в зависимости от условий проявлять либо основные, либо кислотные свойства.
Известно, что свойства химических элементов одного периода периодической системы Д. И. Менделеева в связи с увеличением атомного номера изменяются: в начале периода расположены химические элементы металлы, а в конце — неметаллы.
В пределах каждого периода элементы со свойствами металлов сменяются элементами, которые проявляют свойства как металлов, так и неметаллов. Соединения этих элементов называются амфотерными, например Zn — цинк, Be — бериллий, А1 — алюминий и др. Простое вещество цинк — металл. Он образует оксид цинка ZnO и гидроксид цинка Zn(OH)2 — белое нерастворимое в воде вещество.
Как известно, характерным свойством кислот и оснований является их взаимодействие друг с другом.
Гидроксид цинка, как основание, взаимодействует с кислотой, образуя растворимую в воде соль:
Но оказывается, что гидроксид цинка вступает во взаимодействие и со щелочью. При этом происходит следующая реакция:
Гидроксид цинка в этой реакции проявляет свойства кислоты. Таким образом, гидроксид цинка имеет двойственные свойства, он амфотерен.
Разложение амфотерных гидроксидов при нагревании происходит так же, как и всех нерастворимых оснований:
В заключение необходимо отметить, что наличие амфотерных соединений свидетельствует об отсутствии резких границ в классификации веществ (металлы — неметаллы, основания — кислоты).
^
19. Основания, их классификация. Химические свойства щелочей: взаимодействие с оксидами неметаллов и кислотами.
Основаниями называют сложные вещества, состоящие из атомов металла и одной или нескольких гидроксогрупп.
По отношению к воде основания можно разделить на растворимые: NaOH; Ba(OH)2 и нерастворимые: Cu(OH)2; Fe(OH)2. Растворимые основания называются щелочами.
С точки зрения электролитической диссоциации основанием называется соединение, образующее в водном растворе из отрицательных ионов только гидроксид-ионы ОН .
^
20. Понятие аллотропии. Аллотропные видоизменения кислорода.
Ответ следует начать с определения понятия аллотропии как способности химических элементов существовать в виде нескольких простых веществ (аллотропных видоизменений).
Аллотропия (от греч. allos — другой и tropos — образ, способ) связана либо с разным числом атомов в молекуле, либо со строением.
Аллотропные видоизменения есть у большинства химических элементов. Например, сера бывает ромбическая, моноклинная, пластическая; углерод существует в виде графита, алмаза, карбина, фуллере-на. Известно серое и белое олово; фосфор красный, белый и черный.
Кислород может существовать в виде двух аллотропных видоизменений: кислород О2 и озон О3.
При сравнении физических свойств кислорода и озона целесообразно вспомнить, что это газообразные вещества, различающиеся по плотности (озон в 1,5 раза тяжелее кислорода), температурам плавления и кипения. Озон лучше растворяется в воде.
Кислород в нормальных условиях — газ, без цвета и запаха, озон — газ голубого цвета с характерным резким, но приятным запахом.
Есть отличия и в химических свойствах.
Озон химически активнее кислорода. Активность озона объясняется тем, что при его разложении образуется молекула кислорода и атомарный кислород, который активно реагирует с другими веществами. Например, озон легко реагирует с серебром, тогда как кислород не соединяется с ним даже при нагревании:
Но в то же время и озон и кислород реагируют с активными металлами, например с калием К.
Получение озона происходит по следующему уравнению:
Реакция идет с поглощением энергии при прохождении электрического разряда через кислород, например во время грозы, при сверкании молнии. Обратная реакция происходит при обычных условиях, так как озон — неустойчивое вещество. В природе озон разрушается под действием газов, выбрасываемых в атмосферу, например фреонов, в процессе техногенной деятельности человека.
Результатом является образование так называемых озоновых дыр, т. е. разрывов в тончайшем слое, состоящем из молекул озона.