Минорный белок сыворотки крови связанный с беременностью альфа 2 -гликопротеин: теоретические и практические аспекты 03. 00. 04. Биохимия

Вид материалаАвтореферат диссертации

Содержание


Задачи исследования
Научная новизна и теоретическая значимость исследования
Практическая ценность и внедрение результатов исследования
Основные положения, выносимые на защиту
Апробация работы
Объем и структура диссертации
Личное участие автора в получении научных результатов
Содержание работы
Количественная характеристика исследованного материала
Сыворотка крови
Ретроплацентарная кровь
Маточный смыв
Бронхиальный секрет
Образцы тканей для морфологических исследований
Характеристика материала для морфологических исследований
Биохимические методы
Иммунохимические методы
Экспериментальную часть по изучению биологической роли
Для проведения морфологических исследований
Результаты исследований и их обсуждение
...
3   4   5   6 ^

Задачи исследования:

  1. Определить и уточнить физико-химические свойства СБАГ.
  2. Выявить наличие и выраженность возможных межмолекулярных взаимодействий СБАГ с некоторыми белками сыворотки крови.
  3. Провести сравнительный анализ аминокислотного состава СБАГ и белков крови, участвующих в межмолекулярных взаимодействиях.
  4. Разработать на основе результатов изучения физико-химических свойств новые подходы к получению высокоочищенных препаратов СБАГ для экспериментальных исследований и приготовления компонентов иммунохимических тест-систем.
  5. Определить локализацию и возможное место синтеза СБАГ методом иммунофлюоресцентного анализа тканей различных органов и выявить изменение накопления СБАГ в малигнизированных тканях.
  6. Изучить распределение СБАГ в биологических жидкостях организма человека и обезьян.
  7. Провести параллельное изучение иммуномодулирующей активности СБАГ и других белков, ассоциированных с беременностью, в эксперименте in vivo.
  8. Установить уровень СБАГ в крови здоровых лиц и зависимость его продукции от возраста и пола.
  9. Оценить клиническое значение иммунохимического теста на СБАГ при физиологически протекающей и осложненной беременности.
  10. Установить диагностический диапазон применения теста на СБАГ при воспалительных и онкологических заболеваниях.
  11. Сравнить продукцию СБАГ с другими молекулами, обеспечивающими физиологические и патогенетические процессы в клетке и организме при беременности и воспалении.

^ Научная новизна и теоретическая значимость исследования

Исследование в значительной степени носило поисковый характер, что определило закономерную научную новизну в получении оригинальных данных по физико-химическим свойствам, определении подходов к установлению места локализации или синтеза, установлении патогенетического значения и диагностического диапазона продукции минорного альфа2-гликопротеина, связанного с беременностью.

Впервые выявлены и обоснованы межмолекулярные взаимодействия СБАГ с другими белками сыворотки крови, что, вероятно, связано с его функциональным предназначением, и отмечено изменение физико-химических характеристик нативного белка, обусловленное этими взаимодействиями.

Впервые получены результаты сравнительного анализа аминокислотного состава и последовательности СБАГ и МГ, позволяющие предположительно указать радикалы, обеспечивающие межмолекулярные взаимодействия СБАГ.

Впервые иммунофлюоресцентными исследованиями показано повышение концентрации СБАГ в тканях эндометрия и толстого кишечника при малигнизации.

Впервые проведена сравнительная оценка иммуносупрессивных свойств СБАГ с другими белками беременности (ТБГ и АФП) и показана зависимость концентрации СБАГ в сыворотке крови матери не только от сроков и характера течения беременности, но и от уровня ТБГ, также обладающего иммуносупрессивным действием.

Установлены параллели в продукции СБАГ и некоторых биологически активных компонентов гомеостаза, а именно: иммуноглобулинов, интерлейкинов, маркера апоптоза.

Впервые показано изменение продукции СБАГ в зависимости от характера и степени выраженности воспалительного процесса при разных локализациях.

^ Практическая ценность и внедрение результатов исследования

Предложен рациональный метод одновременного выделения СБАГ и двух других белков, имеющих с ним межмолекулярные связи (МГ и ТБГ). Этот метод позволяет экономить исходный биоматериал, реактивы, временные и финансовые ресурсы. Полученные белковые препараты могут быть использованы для научных исследований и практического применения.

Разработан метод иммуноферментного определения уровня СБАГ в биологических жидкостях организма с формированием опытного образца набора ИФА на СБАГ на производственной линии. Составлена инструкция по применению сформированного набора реагентов для ИФА-СБАГ.

Обоснованы практические рекомендации по применению иммунохимического теста на СБАГ, которые могут быть направлены на улучшение диагностики течения беременности и воспалительного процесса.

Разработаны способы определения воспалительного заболевания и оценки течения беременности, рассчитан коэффициент иммунологической адаптации системы мать-плод-плацента, основанный на взаимозависимости уровня двух белков беременности, обладающих идентичной иммуномодулирующей активностью, и позволяющий в динамике оценивать характер протекающей беременности. Разработки защищены патентами РФ.

Результаты исследований внедрены в практику МУЗ «Клинический родильный дом» г. Астрахани, а также используются в научной и практической работе кафедр теоретического и клинического профиля ГОУ ВПО АГМА: биохимии с курсом клинической лабораторной диагностики, медицинской биологии и генетики, акушерства и гинекологии, педиатрии, госпитальной терапии с курсом функциональной диагностики, пропедевтики внутренних болезней с курсом ревматологии, хирургии, урологии.

Внедрение практических результатов диссертации может быть распространено на все лечебные учреждения акушерско-гинекологического, педиатрического и терапевтического профиля на федеральном уровне.

В 2007 и 2008 годах новые способы и иммунохимические тест-системы для лабораторной диагностики воспаления, течения беременности и оценки состояния новорожденных, включавшие результаты данного исследования, были удостоены 2 золотых медалей на VII и VIII Московских международных салонах инноваций и инвестиций. В 2007 году инвестиционный проект «Новые иммунохимические тест-системы для лабораторной диагностики осложненного течения беременности, гипоксии и деструктивных процессов» был представлен на выставке: «Инновационные достижения России» XI Петербургского международного экономического форума.

^ Основные положения, выносимые на защиту

1. СБАГ, имеющий аналог у обезьян, является не строго гравидарным, а минорным сывороточным белком, частота выявления и уровень в крови доноров и здоровых детей которого зависит от пола, возраста и группы крови. Продукция СБАГ возрастает не только при беременности, но и при целом ряде патологических состояний: воспалении, опухолях, системных заболеваниях у взрослых и детей. Причем, в некоторых случаях (ревматизм, гломерулонефрит, бронхиальная астма и другие) уровень СБАГ достигает величин, сопоставимых с уровнем этого белка при беременности (до 100 и более мг/л).

2. СБАГ участвует в поддержании иммуногоместаза матери и плода, а также больных воспалительными, аутоиммунными и опухолевыми заболеваниями, что подтверждено полученными в ходе диссертационной работы результатами эксперимента in vivo по иммуносупрессивному эффекту СБАГ, связи его продукции с другими биологически активными компонентами гомеостаза, а именно: с иммуноглобулинами, интерлейкинами, маркером апоптоза.

3. Сывороточный СБАГ, обладая высокой молекулярной массой, практически не выявляется в других биологических жидкостях. Обнаруженная иммунофлюоресцентным методом его локализация на лимфоцитах и в тканях некоторых органов с увеличением содержания СБАГ в плаценте и малигнизированных клетках позволяет предположить наличие факторов, активирующих синтез СБАГ для реализизации его иммуномодулирующих свойств, наиболее выраженных при беременности и опухолях.

4. При выделении и очистке СБАГ из сыворотки крови следует учитывать возможность его межмолекулярных взаимодействий с некоторыми другими белками крови, например, с МГ, приводящих к изменению распределения этих белков на разделительных средах (эти взаимодействия снимаются воздействием детергентов), а также сродство СБАГ к гормональным компонентам сорбентов, содержащим эстрогены.

5. Использование теста на СБАГ в оценке течения беременности основано на достоверных изменениях концентрации СБАГ в зависимости от сроков нормально протекающей беременности и развития осложнений беременности. Его диагностическая значимость возрастает при одновременном определении СБАГ с ТБГ, так как синтез этих белков, обладающих идентичной иммуномодулирующей активностью, взаимозависим.

6. Применение иммунохимического теста на СБАГ позволяет выявлять воспаление, в том числе скрытые формы, вне зависимости от локализации и на всем протяжении процесса. Особенно полезен тест в оценке эффективности лечения при многих нозологических формах воспалительных заболеваний сердца, легких, почек и других органов.

^ Апробация работы

Материалы диссертации были доложены на тематических и итоговых научно-практических конференциях сотрудников ГОУ ВПО АГМА и врачей Астраханской области, а также на российских и международных форумах: V Всесоюзном биохимическом съезде (Москва, 1986); конференции «Биохимия – медицине /молекулярные механизмы формирования патологических состояний/» (Ленинград, 1988); Всесоюзном симпозиуме с международным участием «Патогенез хронического воспаления» (Новосибирск, 1991); Всероссийской научной конференции «Современные проблемы диагностики и лечения хронических неспецифических заболеваний легких у детей» (Москва-Нальчик, 1991); 1-st International Conference on Immunoreabilitation (Sochi, 1992); 1-м съезде иммунологов России (Новосибирск, 1992); of the Meetings FEBS (Federation of European Biochеmical Societies) –1993 (Stockholm), 1995 (Basel); of the Meetings ISOBM (International Sotiety for Oncodevelopmentitae Biology and Medicine) – 1989 (Freiburg), 1990 (Moscow), 1998 (Umea, Sweden), 2000 (Munich), 2004 (Helsinki), 2005 (Greece); 5-й научной конференции с международным участием «Дни иммунологии в Санкт-Петербурге, 2001»; Европейском конгрессе по астме и IV съезде клинических иммунологов и аллергологов СНГ (Москва, 2001); 3-rd Central European Conference on Human Tumor Markers. - Cechtuma (Praga, 2001); Международной научно-практической школе-конференции «Цитокины. Воспаление. Иммунитет» (С-Пб. - 23-26 июня 2002); 3-й научной конференции и школе-семинаре для молодых ученых «Белки-маркеры патологических состояний» (Астрахань-Москва, 2003); XVII Всемирном конгрессе по астме и V съезде иммунологов и аллергологов СНГ (С.-Пб., 2003); II Европейском конгрессе по Астме и I Международном конгресс «Здоровье и лекарство» (Тбилиси, Грузия, 2004); научно-практических конференциях и школах-семинарах для молодых учёных с международным участием «Современные достижения фундаментальных наук в решении актуальных проблем медицины» (Астрахань-Москва, 2004, 2006); VI съезде иммунологов и аллергологов СНГ (Москва, 2006); II и IV международных ежегодных конференциях «Проблемы диагностики и лечения рака молочной железы» (С.-Пб. – 2005, 2007); IV съезде Российского общества биохимиков и молекулярных биологов (Новосибирск, 2008).

Публикации. По теме диссертации опубликована 91 научная работа, из них 16 в рекомендуемых ВАК изданиях, 2 патента.

^ Объем и структура диссертации

Диссертация изложена на 253 страницах компьютерного текста, состоит из оглавления, введения, обзора литературы, шести глав собственных исследований, обсуждения, выводов, практических рекомендаций, 2 приложений, библиографического указателя, включающего в себя 302 литературных источника: 101 отечественный и 197 иностранных. Иллюстративный материал представлен 29 таблицами, 36 рисунками.

^ Личное участие автора в получении научных результатов заключается в формировании идеи исследования, планировании и выполнении основного объема экспериментальной части работы, в разработке плана изучения клинического материала и тестировании большей части коллекций образцов биологического материала обследуемых лиц, статистической обработке, анализе и интерпретации полученных результатов.

В работу вошли результаты исследований, проведенных совместно с представителями клинических кафедр и научных лабораторий АГМА, РГМУ, других учебных и научных учреждений. Автор выражает благодарность всем коллегам, в соавторстве с которыми были опубликованы работы.

Работа выполнена на кафедре биологической химии с курсом клинической лабораторной диагностики и на базе учебно-научно-диагностического центра ГОУ ВПО «Астраханская государственная медицинская академия» Росздрава. Отдельные фрагменты работы были поддержаны грантами ФЦП «Интеграция науки и высшего образования России», Фонда содействия развитию малых форм предприятий в научно-технической сфере РФ и Губернатора АО.


^ СОДЕРЖАНИЕ РАБОТЫ

Материалы и методы исследования

Для теоретического и клинического изучения СБАГ использовали биологические жидкости и ткани лиц здоровых и страдающих воспалительными, онкологическими и другими заболеваниями, заведомо или предположительно содержащими объект исследования.

Поскольку этим объектом являлся сывороточный белок крови беременных женщин, то, прежде всего, изучению были подвергнуты образцы сыворотки крови женщин различных сроков беременности, рожениц, родильниц, плодов и новорожденных, женщин, страдающих онкологическими и нераковыми гинекологическими заболеваниями, доноров - мужчин и женщин. Исследовали и другие биологические жидкости организма человека: мочу беременных и небеременных женщин, амниотическую жидкость, ликвор, плевральный и перикардиальный экссудат, маточные смывы, а также различные тканевые экстракты взрослых людей и плодов (табл 1).

Кроме того, при изучении видового распределения СБАГ тестировали сыворотку крови обезьян Macaca Rhesus, Macaca Cynomolgus, Macaca Fascicularis (резус, яванская, лапундер).

В качестве исходного материала при выделении и очистке СБАГ использовали кровь женщин с поздними сроками беременности (36-40 недель развития), рожениц и ретроплацентарную кровь.

Группы обследованных формировали из беременных женщин, рожениц и родильниц, находившихся в МУЗ «Клинический родильный дом» г. Астрахани, больных специализированных терапевтических и хирургических отделений клинических больниц г. Астрахани, включая областную и городскую детские клиники. В качестве контроля использовали образцы сыворотки крови доноров, полученные со станции переливания крови, и здоровых детей.

Образцы биологического материала, при необходимости, хранили до исследования при температуре не выше -180 С.


Таблица 1


^ Количественная характеристика исследованного материала


Материал исследования

Количество образцов

^ Сыворотка крови:



доноров-мужчин и женщин

1586

здоровых детей

243

беременных женщин рожениц и родильниц

1697

плодов и новорожденных

226

гинекологических больных

195

онкологических больных

608

больных другими заболеваниями, включая детей

2526

практически здоровых лиц

1475

^ Ретроплацентарная кровь

182

Экстракты:




плаценты

95

различных тканей плодов

16

различных тканей взрослых людей

39

моча здоровых и больных лиц

124

моча беременных женщин: здоровых и с гестозами

3428

^ Маточный смыв

139

Молоко матери

78

Амниотическая жидкость

63

Экссудат:




плевральный

27

перикардиальный

9

^ Бронхиальный секрет

128

Желчь

23

Ликвор

104

^ Образцы тканей для морфологических исследований


175

ИТОГО

13186



Для определения места локализации и предполагаемого синтеза использовали гистологические препараты из тканей здоровых (аутопсийный материал от лиц, погибших в результате случайных причин) и патологически измененных тканей (операционный материал), полученных в патологоанатомическом бюро областного онкологического диспансера города Астрахани, ГНЦ колопроктологии РФ, МНИОИ им. Герцена. Образцы ткани плаценты получали в клиническом родильном доме и родильном отделении Астраханской областной Александро-Мариинской больницы. (табл 2).

Полученный материал обрабатывали в лабораториях Астраханской государственной медицинской академии и Центральной научно-исследовательской лаборатории Российского государственного медицинского университета.

Таблица 2

^ Характеристика материала для морфологических исследований



Исследуемый материал

Кол-во

Возрастная группа

Пол

20-29

30-39

40-49

50 и >

М

Ж

1

Эндометрий

30

5

8

10

7



30

2

Плацента

20

18

9

3





30

3

Толстый кишечник

20

7

6

2

5

13

7

4

Аппендикс

10

5

4

1

-

8

2

5

Печень

12

4

6

1

1

4

8

6

Рак и атипичная гипер-плазия эндометрия


53





3


12


38





53




7

Рак толстого кишечника

30





3

27

18

12




Всего

175




















В ходе работы по экспериментальному и клиническому направлениям исследования были использованы биохимические, иммунохимические, в том числе гистохимические, и статистические методы.

^ Биохимические методы применяли для выделения и очистки белков: реакции осаждения, диализ, аналитический и препаративный электрофорез в агаре, агарозе и в полиакриламидном геле (ПААГ), гельпроникающая, ионообменная и аффинная хроматография, спектрофотометрия, лиофилизация.

^ Иммунохимические методы: варианты иммунодиффузионного анализа в геле, иммуноэлектрофорез, иммуноферментный анализ (ИФА) и реакция иммунофлюоресценции (РИФ). В работе были использованы иммунохимические тест-системы на СБАГ, трофобластический бета-глобулин (ТБГ), альфа2-макроглобулин (МГ), С-реактивный белок (СРБ), цитокины и маркер апоптоза DR5. Моделирование иммунодиффузионных тест-систем на СБАГ, ТБГ и МГ осуществляли из самостоятельно полученных реагентов в лабораториях АГМА, лабораторные образцы ИФА наборов на СБАГ формировали в АГМА и НВО «Иммунотек», г.Москва. В других случаях были использованы коммерческие антисыворотки. Методом ИФА на аппаратуре фирмы BioTechnics определяли макрофагальный белок воспаления (MIP-1β), IL4 и TNFα (Cytimmune); DR5 (Biosource International); СРБ (диагностические наборы отечественного и импортного производства). Часть образцов тестировали на СРБ также методом ИДА с коммерческой антисывороткой. Уровень СБАГ, МГ, ТБГ в исследуемых образцах экспериментального и клинического материала определяли имунодиффузионным титрованием со стандартной тест-системой.

Антисыворотки к СБАГ и белкам сравнения получали на кроликах породы шиншил весом 2-3 кг. Иммунизацию проводили по модифицированной схеме с использованием адъювантов. Антигенами были выделенные из крови беременных женщин методами высаливания, препаративного электрофореза, ионообменной и гельпроникающей хроматографии препараты СБАГ, ТБГ, МГ, в качестве дополнителей - адъювант Фрейнда и ланолин-вазелиновая смесь.

В первый день вводили смесь антигенного материала с полным адъювантом Фрейнда (0,4 мл раствора антигена, 3,2 мл адъюванта, 0,4 мл 0,15М раствора NаСl) подкожно в несколько мест (до 8), реже в лимфузлы подколенных ямок. После трехдневного перерыва инъекции возобновляли и вводили антиген с равным объемом 2,5% раствора алюмокалиевых квасцов через день в возрастающих дозах внутримышечно. Каждую дозу вводили дважды. Всего 10 подкожных и внутримышечных введений. Заключительную инъекцию проводили внутривенно или внутрибрюшинно чистым антигеном. Общее количество белка, вводимого животному за весь цикл иммунизации, составляло 150-200 мг. Для получения антисывороток с высоким уровнем антител через 2-3 месяца проводили реиммунизацию введением 100-120 мг белка тремя инъекциями: подкожной, внутримышечной и внутривенной с интервалами в 90-120 мин. Забор крови осуществляли из краевой вены уха кролика в количестве 40-50 мл на 7-9 день после заключительного введения антигена. Полученные антисыворотки проверяли на специфичность сопоставлением со стандартной тест-системой на исследуемый белок. Поливалентные антисыворотки дополнительно истощали лиофилизированной плазмой донора.

^ Экспериментальную часть по изучению биологической роли СБАГ проводили по двум направлениям: оценки иммуномодулирующей активности белка на лабораторных мышах и определению его сродства к стероидным гормонам методом аффинной хроматографии. Иммуномодулирующая активность белка была изучена методом локального гемолиза (Jerne, Nordin) по первичному иммунному ответу на эритроциты барана у здоровых половозрелых мышей линии СВА, иммунизированных внутрибрюшинно и антигеном (ЭБ) в количестве 5х108 клеток (0,5 мл 5%), и белком, введенным животным через 48 часов. На 5-е сутки после иммунизации подсчитывали число антителообразующих клеток (АОК) селезенки и измеряли ее массу. В опытах было использовано 180 мышей, так как параллельно со СБАГ в качестве объекта сравнения были изучены препараты ТБГ, 2-МГ, АФП.

^ Для проведения морфологических исследований образцы нормальных и малигнизированных тканей размерами от 0,5до 1см помещали в фиксатор – абсолютный спирт для дальнейшего получения парафиновых блоков, либо замораживали при минус15-20ºС и изготавливали криостатные срезы. В проведении реакции иммунофлюоресценции использовали антикроличьи диагностические иммуноглобулины, меченные флуоресцеин-5-изотиоцианатом (ФИТЦ) из НИИЭМ им. Н.Ф.Гамалея.

Статистическую обработку полученных результатов проводили с помощью пакета статистического анализа Statistica 6.0, SPSS 7.0 for Windows и Microsoft Office Excel 2003 с учетом стандартных методик вариационной статистики и критерия t Стьюдента для оценки достоверности различий.

^ Результаты исследований и их обсуждение

При изучении физико-химических свойств СБАГ в нативных условиях использовали биохимические методы в сочетании с иммунохимическими для идентификации изучаемого белка в исходном материале и на разных этапах достижения конечного результата (табл. 3). СБАГ является гликопротеином – наличие углеводного компонента было подтверждено специфическим окрашиванием его линий преципитации в агаре на высушенной иммуноэлектрофореграмме. Определение относительной электрофоретической подвижности проводили в агаре «Дифко», в агарозе «Calbiochem» и полиакриламидном геле (ПААГ).

Таблица 3

Основные физико-химические свойства СБАГ

Свойства

Метод, среда, носитель

Результат

Относительная электрофоретическая подвижность

В агаре, агарозе,

ПААГ


0,76,

зона гамма-глобулинов

Коэффициент диффузии

В агарозе


3,48 (х10-7см2/сек)


Молекулярная масса


Тонкослойная хроматография,

гель-фильтрация

280–365 кДа


Наличие небелковых компонентов

Окраска по методу Шифф-йодная кислота

Сложный белок - гликопротеин

Отношение к осаждающим агентам

Сульфат аммония,

риванол, спирты,

полиэтиленгликоль,

и другие.

Выпадает в осадок в широком диапазоне

Основная часть – во фракции тяжелых белков

Распределение на

молекулярных ситах

Сефадекс G-50 – 200,

и Toyopearl-65

Элюция сразу за свобод-ным объемом с МГ

Распределение на

ионообменных носителях


DEAE-сефадекс, DEAE -SS- и CM-целлюлоза, DEAE-servacelle,

SC- гидроксиапатит, фенилсефароза и другие.

Хорошо выделяется на анионитах.



Электрофоретическая подвижность относительно альбумина в агаре составила 0,76 ± 0,035, а коэффициент диффузии в агарозе – 3,48±0,45 х10-7см2/сек. При электрофоретическом разделении в ПААГ изучаемый белок обнаруживали в зоне гамма-глобулинов.

Молекулярную массу СБАГ определяли в двух вариантах распределительной гель-хроматографии. При гель-фильтрации сыворотки крови беременных женщин в колонке с сефадексом -200 в фосфатном буфере пик СБАГ выходил в соотношении 1,14 объема элюции к свободному объему, что соответствует молекулярной массе 350-380 кДа. Среднее значение составило 365,8±34,1 кДа. Методом тонкослойной хроматографии, имеющей ряд преимуществ перед колоночным вариантом (малое количество исследуемого вещества и быстрота определения) молекулярную массу СБАГ установили равной 279±1,77 кДа.

Сульфатом аммония СБАГ из сыворотки крови беременных осаждался полностью в диапазоне 35-40% насыщения раствора. При риваноловом фракционировании того же исходного материала СБАГ полностью выводился в осадок.

Было замечено, что электрофоретическая подвижность в геле и объем элюции при гель-хроматографии на сефадексе, отношение к осаждающим агентам СБАГ не соответствуют молекулярной массе этого белка. Особенно наглядно эти несоответствия проявлялись при распределении белков сыворотки крови беременных в хроматографической колонке при гель-фильтрации на сефадексе G-200 (рис. 1). Присутствие СБАГ выявляли во фракциях «тяжелых белков»: его объем элюции совпадал с пиком выхода альфа2-макроглобулина (МГ), молекулярная масса которого превышает таковую по СБАГ более чем в два раза. Кроме того, в объеме выхода СБАГ и МГ присутствовала часть первой фракции ТБГ.

Ранее при изучении физико-химических свойств и выделении белков сыворотки крови человека нами было показано, что некоторые из них, в частности ТБГ и иммуноглобулины класса G (1977), изменяют свои параметры подвижности в геле, отношение к осаждающим реагентам, вероятно, за счет межмолекулярных взаимодействий.




Рис. 1. Элюция СБАГ, МГ и ТБГ на сефадексе G-200

Предположение о том, что СБАГ в нативных условиях проявляет способность к межмолекулярным взаимодействиям, косвенно было подтверждено применением детергентов (оптимальным оказался раствор 0,5М мочевины) при разделении белков сыворотки крови беременных (рис. 2).




Рис. 2. Элюция СБАГ, МГ и ТБГ на сефадексе G-200 с 0,5М мочевиной

Полученные факты, а также появившиеся работы об участии неполярных радикалов в связывании протомеров сложных белков определили задачу следующего этапа работы по проведению сравнительного качественного анализа гидрофобных радикалов (ГР) в первичной структуре СБАГ и МГ.

Исходным материалом для исследования послужили данные по структуре белков из международной базы данных SwissProt. Белок беременности, по мнению некоторых авторов, является димером, а более изученный МГ, однозначно, тетрамером. Мономер СБАГ содержит 1482 аминокислотных остатка, а МГ – 1474, то есть разница в их количестве составляет всего 8 аминокислот.

Сравнительный анализ аминокислотной последовательности указанных белков показал, что процентное содержание неполярных аминокислот (НПА) составляет для МГ 46% (578), а для СБАГ 39% (684). Процентное отношение каждой НПА к их общему количеству составляет для МГ: вал 20% (139), про 11% (73), лей 32% (221), илей 11% (73), ала 14% (96), гли 12% (86); для СБАГ: вал 23% (135), про 14% (79), лей 24% (137), илей 9% (53), ала 16% (91), гли 14% (83). То есть, количество каждой из НПА в этих белках различается на 2-3% (за исключением лейцина, для которого разница составляет 8%). Анализ расположения в полипептидной цепи одиночных и сгруппированных по 2 и более ГР (для МГ это 251 и 327, а для СБАГ- 250 и 464 соответственно) позволяет выявить аналогичные звенья ГР, которые вероятно участвуют в формировании пространственной конформации белка, и отдельно расположенные ГР, которые могут оставаться на поверхности уже сформировавшейся третичной структуры белка и участвовать в обеспечении межмолекулярных взаимодействий или эффекта прилипания.

Такие связи, несмотря на малое количество энергии (0,1кДж), при образовании их в большом количестве, по-видимому, могут обеспечивать достаточную прочность, которая приводит к значительным трудностям при разделении белков с помощью гель-фильтрации и даже электрофореза.

^ Для разработки оптимального метода выделения и очистки СБАГ были учтены результаты поисковых экспериментов с использованием многих носителей для ионообменной, распределительной и аффинной хроматографии. С учетом того, что СБАГ является гликопротеином, изучали его поведение в колонке с гепарин-CNBr-cефарозой и в растворе под воздействием полиэтиленгликоля молекулярной массы от 300 до 40000 и различного процентного содержания. Для получения чистых препаратов очень важно было отделить СБАГ от МГ. Наибольшего внимания заслуживают два варианта, позволяющих разделять СБАГ и МГ методами аффинной хроматографии на гепарин-CNBr-cефарозе или эстрадиол-сефарозе с триазиновой вставкой (Е2-S1). Результаты эксперимента показали, что МГ обладает значительно меньшим сродством к гепарину и гормональному компонентам аффинного сорбента, чем СБАГ и ТБГ.

Неожиданно интересные данные были получены при разделении методом гидрофобной колоночной хроматографии на фенилсефарозе CL-4B белков фракции крови беременных (осадок после воздействия 40% раствора сульфата аммония), содержащей СБАГ, а также МГ и ТБГ (рис 3) .




Рис. 3. Элюция СБАГ, МГ и ТБГ на фенилсефарозе 4B

в градиенте 1М раствора (NH4)2SO4

1-5 – фракции несорбировавшихся белков

Значительная часть МГ выходила в объеме несорбировавшихся белков, что, на первый взгляд, мало согласуется с наличием в МГ 46% неполярных аминокислот (в СБАГ - 39%). Вероятным объяснением может быть участие большей части гидрофобных радикалов в образовании связей между протомерами и снижение вследствие этого гидрофобных свойств четвертичной структуры. Для разделения СБАГ и ТБГ было отработано несколько вариантов

Наиболее рациональной оказалась схема выделения с последовательным использованием методов, указанных в таблице 4.

Таблица 4

Очистка СБАГ из сыворотки крови беременных женщин поздних сроков

Этап очистки

Концентрация белка, мг

Кратность очистки

Выход (%)

общий

СБАГ

Исходный материал

31200

28,8

1

100

(NH4)2SO4 (35-40%), осадок

6736

28,8

4,63

100

фенилсефароза CL-4B

194,7

12,45

34,6

43,23

Sc-гидроксилапатит

18,9

7,5

10,3

26,04

Сефадекс-G200

2,85

2,25

6,63

7,81


Н

а последнем этапе можно использовать разделение на сефакриле. При указанном алгоритме очистки был получен препарат высокой степени чистоты (рис 4).


1 – разделение на фенилсефарозе CL-4B:

фракции, содержащие МГ, СБАГ, ТБГ и небольшое количество примесных белков;

2 - разделение на Sc-гидроксилапатите: фракции, содержащие преимущественно МГ;

3 - разделение на Sc-гидроксилапатите: фракции, содержащие преимущественно СБАГ


1 2 3

Рис 4. ПААГ электрофореграмма белков фракций основных этапов очистки

Еще одним эффективным способом выделения и очистки СБАГ оказалась последовательность применения следующих методов: осаждение 40% раствором (NH4)2SO4, диализ, ионообменная хроматография на сефадексе DEAE-50 (или Servacelle DEAE-52), распределительная хроматография на Toyopearl-65 (или сефадексе G 200 + детергент), аффинная хроматография на эстрадиол-сефарозе с триазиновой вставкой.

^ Распределение СБАГ в биологических жидкостях. С учетом того, что СБАГ впервые был выявлен в крови беременных женщин, ранее нами были предприняты поиски его в таких биологических объектах, как сыворотка крови плодов и новорожденных, амниотическая жидкость, моча беременных и молоко матерей (Д.М.Никулина и соавт,1976), табл.5. Позднее поиски были расширены и СБАГ определяли в других биологических жидкостях организма здорового человека и больных с воспалительными и опухолевыми заболеваниями (табл 6).

Таблица 5

Выявление СБАГ в биологических жидкостях беременных женщин и плодов

Биологическая

жидкость

Всего n

Частота выявления

Уровень СБАГ в мг/л.

n

%

M±m

Min - max

Сыворотка крови:

- беременных женщин

- рожениц

- плодов

новорожденных


121

163

22

167


121

163

-

2


100

100


1,2


38,4±20,7

95,07±17,1


следы


10 – 128

40 – 320

Амниотическая

жидкость *


51


5


9,8


6,0±2,24


5 – 10

Моча беременных

113

-










Молоко матерей -

2–10 день после родов


78


-










*/ пробы концентрировались до 1/4 - 1/5 исходного объема


При онкологических заболеваниях независимо от локализации процесса продукция СБАГ значительно увеличивается, однако высокий уровень этого белка не может быть специфическим показателем опухолевого процесса. Наиболее интересным представляется факт обнаружения СБАГ в маточных смывах при патологии эндометрия. Всего было исследовано 139 образцов лаважной жидкости: 52 больных раком тела матки; 19 – атипической железистой гиперплазией эндометрия; 51 – миомой матки. СБАГ выявлен, соответственно, в 86,54; 47,37; 23,53 и 13,73% случаев без существенной разницы в концентрации этого белка, хотя отмечена некоторая зависимость уровня СБАГ от количества экзогенных эстрогенов в случаях гормонотерапии.

Таблица 6

Выявление СБАГ в биологических жидкостях организма человека

Биологическая

жидкость

Всего образ-цов

Наличие СБАГ в биологической жидкости

здоровых лиц

при

беремен-ности

при

воспа-лении

при

опухолях

Сыворотка крови

>3000

+

+

+

+

Моча

186

-

-

-

-

Спинномозг. жидкость

104

н/опр

н/опр

-

-

Бронхиальный секрет

128

-




+

+

желчь

23

-

н/опр

-

-

Маточный смыв

139

н/опр




н/опр

+