Конспект лекцій дисципліни «основи біотехнології рослин»

Вид материалаКонспект
Подобный материал:
1   2   3   4   5
вектори - плазміди або віруси (бактеріофаги), які здатні переносити в клітину вмонтований в їх ДНК чужий ген, забезпечуючи там його реплікацію та синтез білкових продуктів. Вектор - це молекулярний прилад для доставки чужорідних генів у різні організми; фактично - це "віз" для генів.

Більшість експериментів з генетичної інженерії проводяться на ДНК плазмід бактерій, тому розглянемо це питання більш детально.

-Плазміди - це невеликі кільцеві молекули ДНК, які присутні у більшості бактерій разом із хромосомною ДНК. Вони здатні до автономної реплікації, тобто не­суть гени, що відтворюють власну ДНК, а також мають гени стійкості до антибіотиків, гени патогенності (здатності бактерій викликати захворювання людей, тварин і рослин). Не випадково, що про плазміди першими голосно заговорили медики, коли випадково у 1959 році була доведена неефективність деяких антибіотиків при лікуванні інфекційних та інших захворювань. Це явище обумовлюється присутністю генів стійкості до антибіотиків в плазмідах патогенних бактерій. ДНК кільцевих плазмід легко переходить від однієї бактерії до іншої, що робить їх генетично несприятливими до ліків. Наприклад, деякі плазміди можуть виробляти фермент пеніцилазу, яка руйнує пеніцилін і патогенні бактерії залишаються життєздатними. Тому кращим засобом лікування можна вважати два шляхи: без антибіотиків (по можливості) або із використанням все нових антибіотичних речовин, проти яких у патогенної мікрофлори немає генів стійкості.

Сучасні дослідники працюють із штучними плазмідами рВК 322, 324, 325 та ін., які мають невеликі розміри (3-9 тис. нуклеотидних пар). Вони несуть два-три маркерних гени стійкості до антибіотиків, в яких обов'язково міститься сайт рестрикції до певної рестриктази.


3. Пошуки шляхів введення чужорідних генів в клітини вищих рослин, що інтенсивно проводяться вченими останні 20-25 років, привели до певних теоретичних узагальнень і конкретних практичних результатів.

Сучасні методи переносу нових генів в рослину можна згрупувати таким чином: першу групу експериментальних підходів складають методи введення генів за допомогою природних векторів ( на основі Ті-плазмід Agrobacterium tumifaciens, Rі-плазмід А.rhizogenes, транспозованих елементів, вірусів і віроїдів), другу - прямі методи введення чужорідної ДНК в геном вищих рослин (пряма трансформація протопластів, мікроін’єкції, електропорація, упакування в ліпосоми, біолістика та ін.)(Пизурян Е.С., 1086; Пастернак Т.П., 1991).

Особлива увага дослідників при розробці трансформуючих векторів зосереджена на використанні їх природних аналогів — онкогенних плазмід агробактерій.

Введення чужорідних генів в рослину

за допомогою Ті-плазмід

Agrobacterium tumitaciens


Злоякісні пухлини рослин, які описував ще Аристотель під назвою "корончатий гал", широко спостерігаються в природі у вигляді грубих наростів на прикореневих і надземних частинах стебла, підземних коренях, у місцях з'єднання прищепи і підщепи. Хвороба уражує понад 600 видів рослин, головним чином — дводольних ( виноград, плодові, лісові та декоративні породи дерев і кущів, цитрусові, томати, бобові, гвоздика та ін.). Рослини, на яких утворились гали, починають відставати в рості, часто підсихають і стають чутливими до несприятливих умов середовища. Втрати врожаю хворих рослин можуть складати до 50-70%. і

На початку XX ст. Е.Сміт і К.Таудсенд (і907) показали, що збудником цього захворювання є бактерія Agrobacterium tumifaciens (буквальний переклад "польова бактерія, що викликає пухлини"). Відомі також інші вірулентні штами агробактерій: А. rhizogenes (викликає захворювання "бородатий корінь" – hairy root) та А. rubi ("стебловий гал" – cane gall). У 40-х роках американський дослідник Армін Браун виявив, що клітини рослинних пухлин інтенсивно ростуть на штучних поживних середовищах ін вітро без фітогормонів, на відміну від нормальних клітин. Подальші дослідження пояснили причину такої "самостійності" пухлинних клітин - вони самі виробляють великі кількості цих фітогормонів.


У 1974 році Джозеф Шелл і Марк ван Монтеню зробили відкриття - встановили пряму залежність фітопатогенності окремих штамів агробактерій від присутності в них кільцевих плазмід великого розміру, позначених як Ті-плазміди (tumor inducing – індукуючи пухлини), або скорочено — рТі. Відкриття Ті-плазмід мало фундаментальне значення — встановлена можливість генів прокаріот-бактерій контролювати деякі ознаки аукаріот-рослин.

Сучасне уявлення про структуру Ті-плазмід базується на майже 20-річному вивченні їх пухлиноутворюючої дії, рестриктному аналізі і молекулярному клонуванні фрагментів плазмідної ДНК ( Пирузян Е.С., 1986, 1988; Чернин Л.С, Зос Н.Н., 1986; Чернин Л.С.,1990; Армитидж Ф. та ін., 1991).

Ті-плазміди - кільцеві молекули ДНК розміром 50-80 мкм, молекулярною масою близько 1,3.106Д і довжиною до 200 тис. пар нуклеотидів, що дозволяє їм кодувати близько 150-200 білків. Генетична карта рТі повністю не розшифрована. З'ясовано тільки 4 ділянки: дві онкогенні (Т-ділянка, vir-гени) і дві ділянки (ОR1. СОN), які визначають морфологію пухлин, забезпечують реплікацію плазмід та їх кон'югацію (здатність переноситись від однієї бактерії до іншої).


4. Масштаб досягнень в генній інженерії рослин на сьогодні скромний у порівнянні з іншими біотехнологічними напрямками (мікроклональним розмноженням, соматичною гібридизацією та ін.). Але генетична інженерія відкриває перед селекцією рослин нові перспективи, пов’язані з можливістю перенесення в них генів від бактерій, грибів, екзотичних рослин та навіть людини і тварини і таким чином відкриває можливості, недосяжні методами експерементального мутагенезу і традиційної селекції.

Останнім часом виникла потреба створення більш продуктивних форм рослин, які могли б поєднувати не лише якісні та кількісні ознаки, а й стійкість проти біотичних та абіотичних факторів навколишнього середовища. Ці дослідження передбачають роботу зі значною кількістю генів. Наприклад для поліпшення смакових властивостей рослинної продукції (надання солдодшого смаку) використовують гени синтезу монеліну або тауматину – білків, які в 100000 разів солодші, ніж цукор, в розрахунку на молекулярну масу. Ці білки виділені з плодів африканських рослин. Ген синтезу монеліну введено в рослини томатів і цибулі-латуку. Трансгенні рослини накопичують цей білок у значній кількості в плодах і листках.

Отримані трансгенні рослини сої і кукурудзи з поліпшеними якостями жирів, з дуже низьким вмістом поліненасичених жирних кислот і високим рівним мононенасичених кислот. Деякі з цих модифікованих жирів застосовують в промисловості як мастильні матеріали. Клоновано гени запасних білків сої, гороху, квасолі, кукурудзи, картоплі та багато ін. Одним з шляхів створення більш повноцінного білка у зернобобових культур є використання гена 2S-білка бразильського горіха, що містиь велику кількість метіоніну. В такий спосіб отримано трансгенні форми бобів. Створенно трансгенні рослини конюшини, що містять ген синтезу білка соняшнику з підвищеним вмістом сірковмісних амінокислот.

Отримано насіння трансгенних кормових культур, які містять набір ферментів для підвищення засвоєння кормів, антибіотики, вітаміни та ін корисні складові. Методами генної інженерії змінюють вміст і склад вуглеводів в бульбах картоплі, томатів, цукрових буряків.

Істотним недоліком плодів протягом зберігання є їх розм’якшення після дозрівання , яке обумовлюється ферментом полігалактуроназою. Для усунення цього недоліку перспективним виявився генно-інженерний метод з синтезом цього ферменту, який у трансгенних томатів визиває лежкість, тобто можливість тривалішого зберігання без гниття.

Для збільшення термінів зберігання був використаний ген арабідопсиса, який кодує мутантний рецептор етилену, що забезпечує знижену чутливість до етилену як фіттогормону. У трансгенних рослин томатів і петунії значно зріс термін дозрівання плодів, а також термін цвітіння і обпадання квіток. Використання цього методу може призвести до суттєвих змін у декоративному садівництві: відкриваються можливості значно довше зберігати зрізані квіти без зміни їхніх властивостей.

Отримані трансгенні рослини цвітної капусти, що характеризуються затримкою старіння.

Сучасне сільське виробництво неможливе без застосування гербіцидів. Однак вони пригнічують ріст як бур’янів, так і культурних рослин. Серед генів, що визначають стійкість проти гербіцидів, клоновані гени стійкості таких гербіцидів, як Раундап (гліфосат), Баста та ін. Із використанням цих генів отримано трансгенні рослини кукурудзи, сої, бавовнику, картоплі, цукрових буряків, гречки, тютюну та ін.

Для створення стійких проти вірусної інфекції рослин використовують антисенсорні конструкції, де копія вірусної РНК вбудовується під промотр, що зумовлює стійкість рослин до віруса (тютюн, картопля, цибулеві декоративні рослини).

Вивчена можливість отримання трансгенних рослин картоплі, рису, сої, квасолі, пшениці, ячменю, які стійкі проти шкідників за рахунок введення генів рослин з інсектицидною активністю.

На сьогодні велика увага приділяється створенню трансгенних рослин зі зміненим забарвленням квіток. Зокрема, отримані рослини петунії зі зміненим забарвленням квіток від пурпурового до темно-червоного методом введення генів дегідрофлавонол-4-редуктази з кукурудзи або гербери. Зі зміненою пігментацією квіток отримані рослини гербери, хризантеми, троянди, гвоздики та ін. Аналогічні підходи використовують для створення квіток зі зміненим забарвленням, а також для зміни пігментації плодів і деревини.