В работе [Hayes-Roth et al, 1988] описана среда ВВ для построения экспертных систем, использующих модель доски объявлений с трехуровневой структурой. Система четко разделена на три уровня — прикладные программы, оболочки задач и архитектуры, — которые, несмотря на такое явное разделение, довольно тесно интегрированы. При разработке акцент сделан на те интеллектуальные системы, которые должны обладать способностью судить о собственном поведении, используя для этого знания о возникающих событиях, состояниях, действиях, которые можно предпринять, и отношениях, существующих между событиями, действиями и состояниями
18.3.1. Уровни абстракции в среде ВВ
На верхнем уровне абстракции — уровне архитектуры — представлен набор базовых структур знаний (представляющих действия, события, состояния и т.п.) и механизм, который служит для отбора и реализации действий. Этот вид знаний обособлен не только от конкретной предметной области, но также независим и от метода решения отдельных задач и проблемы в целом. Идея состоит в том, что архитектура проектируемой системы должна обеспечивать поддержку решения разнообразных задач в множестве предметных областей (точно так же и способность человека мыслить не связана с какой-либо отдельной задачей или областью знаний). На этом же уровне представлены и способности рассуждать о поведении, обучаться и пояснять свои действия.
Оболочки задач — это следующий, более низкий уровень абстракции. На нем представлены промежуточные структуры знаний о действиях и событиях, касающихся определенной задачи, например о неисправностях в тестируемой системе или о конструкциях, удовлетворяющих определенным ограничениям. Методы, которые представлены на этом уровне, могут быть общими для нескольких родственных предметных областей. Здесь есть прямая аналогия с тем, как человек планирует свои действия в разных ситуациях, используя ограниченный набор опробованных стратегий. Примером такой оболочки может служить система ACCORD, которая решает задачу планирования сборки изделия из множества компонентов.
Наиболее специфический уровень — прикладной, на котором сконцентрированы структуры знаний о конкретных действиях в конкретных обстоятельствах и методы решения конкретных классов проблем. Примером системы, в которой используется этот уровень, являются PROTEAN — система вывода структуры протеинов при заданных ограничениях [Hayes-Roth et al, 1986] и SIGHTPLAN — система проектирования архитектурных планировок [Tommelein et al., 1988].
18.3.2. Системы ВВ1 и ACCORD
Перечисленные выше особенности архитектуры среды ВВ можно проиллюстрировать на примере систем ВВ 1 и ACCORD.
Как и в других системах, использующих модель доски объявлений, в системе ВВ 1 источники знаний активизируются событиями на связанном с этими источниками уровне доски объявлений, в результате чего формируется запись активизации источника знаний [Johnson and Hayes-Roth, 1986]. Собственно активизация источника знаний откладывается. Запись активизации находится в списке заявок до тех пор, пока не будут выполнены все предусловия, которые, как правило, связаны со свойствами объектов доски объявлений. Но помимо доски объявлений и источников знаний предметной области, система ВВ1 управляет также и источниками знаний управляющей доски объявлений. Планировщик организует исполнение активизированных источников знаний обоих типов — и предметной области и управления — в соответствии с планом, который динамически корректируется компонентами управляющей доски объявлений. Результат активизации источника знаний сказывается на состоянии уровня доски объявлений, подключенного к его выходу, и таким образом активизируются другие источники знаний.
Основной цикл работы ВВ1 состоит из следующих операций.
(1) Интерпретация действия, предусмотренного очередной записью активизации источника знаний.
(2) Обновление списка заявок — добавление в него новых записей, порожденных изменением данных, вызванных предыдущей операцией, — и сортировка всех записей в списке заявок в соответствии с текущим планом.
(3) Выбор записи с наибольшим рейтингом.
ACCORD — это язык для представления знаний, касающихся выполнения задач сборки многокомпонентных объектов с соблюдением заданных ограничений. Метод сборки компонентов не предусматривает какого-либо наперед заданного режима управления, но требует принятия множества решений при конструировании отдельных узлов. Основной механизм представления предполагает использование иерархии понятий — типов, представителей и экземпляров.
Типы определяют родовые понятия и их роли, в отличие от того, как это делается в семантических сетях с помощью связей типа IS-A (это есть). Представители — это конкретизированные типы, а экземпляры — объекты, созданные при означивании представителей в определенном контексте. Понятия могут иметь атрибуты и входить в определенные отношения с другими понятиями. Здесь имеется определенная аналогия со связями типа IS-A в семантических сетях.
Оболочка, таким образом, предоставляет в распоряжение пользователя скелетные ветви иерархической структуры объектов-компонентов, которые должны образовать единый ансамбль, контексты их компоновки и ограничения, в которые эта компоновка должна "вписываться". Например, ACCORD представляет следующие роли, независимые от предметной области: arrangement (сборка), partial-arrangement (узел) и included-object (компонент). Между ролями имеется отношение типа includes (включает). Среди ролей included-object важное место отводится роли anchor (якорь), представляющей объект, положение которого в общем ансамбле (сборке) должно быть фиксированно, и таким образом определяет локальный контекст для узла. Ролью anchoree представлен объект included-object, который имеет, как минимум, одно ограничение, связанное с его положением относительно объекта anchor.
18.3.3. Система PROTEAN
Система PROTEAN [Hayes-Roth et al., 1986] предназначалась для идентификации трехмерных структур протеинов. Комбинаторные свойства пространства решений не позволяют использовать методику исчерпывающего поиска, поэтому в программе реализована стратегия последовательного уточнения на основе определенного плана управления.
При формировании гипотез в системе PROTEAN локальные и глобальные ограничения используются в комбинации. Локальные ограничения дают информацию о близости атомов в молекуле, а глобальные — информацию о размерах молекулы и ее форме.
Вместо того чтобы пытаться применить все ограничения к анализируемой молекуле в целом, в системе PROTEAN успешно используется подход "разделяй и властвуй" при определении частных решений, которые могут включать разные подмножества элементов структуры протеина и разные подмножества ограничений.
Логический вывод в системе PROTEAN двунаправленный и базируется на использовании доски объявлений с четырьмя уровнями. Когда реализуется нисходящая стратегия (сверху вниз), система использует гипотезы на одном уровне для определения положения на другом, более низком; когда же реализуется восходящая стратегия (снизу вверх), гипотезы на одном уровне используются в качестве ограничений для другого, более верхнего.
Управляющие знания в системе PROTEAN также разделены на разные уровни абстракции. Самый верхний уровень определяет стратегию решения конкретной проблемы. На промежуточном уровне система фиксирует отдельные этапы, необходимые для реализации общей стратегии, а потому программа всегда может получить информацию о том, на какой стадии решения она находится. Нижний уровень управления отвечает за ранжирование записей активизации источников знаний.
Система PROTEAN представляет для нас особый интерес тем, что она демонстрирует, как в рамках архитектуры ВВ1 можно комбинировать независимые от предметной области механизмы логического вывода и зависимые от предметной области знания об ограничениях.
18.3.4. Интеграция стратегий логического вывода
Джонсон и Хейес-Рот обратили внимание на то, что рассуждения, ведомые целью, можно объединить и с иерархическим планированием, и с выбором подходящего контекста в PROTEAN [Johnson and Hayes-Roth, 1986]. Стратегию формирования суждений на основе заданной цели нужно использовать в тех случаях, когда перед выполнением желаемой операции нужно выполнить некоторые подготовительные процедуры. Например, в записях активизации источников знаний, представляющих желаемые операции, могут быть специфицированы определенные предварительные условия, и эти предусловия можно трактовать как подцели, достижение которых будет способствовать активизации указанных источников знаний.
Знания о целях можно дифференцировать, различая причины, побуждающие нас сформировать ту или иную цель. Причинами могут быть стремление
(1) выполнить определенную операцию (например, активизировать определенный источник знаний, представленный в записи активизации);
(2) установить определенное состояние, которое будет способствовать удовлетворению предусловий активизации;
(3) вызвать определенное событие, которое поставит в очередь запись активизации источника знаний с желаемой операцией.
Цели первого типа представляют операции, которые приводят к удовлетворению предусловий. Цели второго типа имеют отношение к ситуации, когда текущий контекст не позволяет запустить на выполнение выбранную запись. В этом случае можно воспользоваться родовым источником знаний, который в ВВ1 имеет наименование ЕпаЫе-Priority-Action. Этот источник и активизируется в тех случаях, когда не удовлетворяются предусловия в выбранной записи. Цели третьего типа имеют отношение к ситуации, когда в списке выбора отсутствуют записи, которые могут привести к выполнению желаемой операции. В этом случае потребуется вмешательство специального источника управляющих знаний, способного отыскать среди прочих источников знаний такой, который содержит в себе желаемую операцию. Создать условия для его активизации — это и есть цель третьего типа.
Указанные две стратегии могут работать совместно, устраняя препятствия для выполнения желаемых операций
18.3.5. Общая характеристика ВВ
Архитектура ВВ, конечно, довольно сложная, но эта сложность оправдывается следующими ее преимуществами по сравнению с более простыми системами.
В этой архитектуре решена задача разделения управляющих знаний и знаний, специфичных для предметной области. Источники родовых управляющих знаний могут без всякой модификации использоваться в экспертных системах самого разнообразного назначения, хотя источники знаний о предметной области при этом будут совершенно различными.
Эта архитектура предполагает дифференциацию источников знаний каждого из указанных типов. Знания о предметной области в системе ACCORD разделены на знания о действиях, событиях, состояниях, объектах, их компоновках и роли объектов в компоновках. Управляющие знания также разделены на знания о стратегии, предусловиях, эвристиках и т.д.
Эта архитектура позволяет формировать пояснения поведения системы в терминах выполняемого плана.
Архитектура предполагает широкое использование языков высокого уровня, подобных ACCORD.
Модули, которые входят в состав среды, могут быть использованы повторно в множестве создаваемых на ее основе прикладных экспертных систем.
Как это случалось и с прежними разработками, выполненными в стенах Станфордского университета, предлагаемый подход интересен не только с точки зрения теории построения систем искусственного интеллекта, но имеет и большую практическую ценность