Учебное пособие Уфа 2008 удк 531(075. 3) Ббк 22. 2я73
Вид материала | Учебное пособие |
- Учебное пособие удк 159. 9(075) Печатается ббк 88. 2я73 по решению Ученого Совета, 5335.58kb.
- Учебное пособие Уфа 2008 удк 616. 97: 616. 5(07) ббк 55., 7232.11kb.
- Учебное пособие Уфа 2005 удк 338 (075. 8) Ббк, 1087.66kb.
- Учебное пособие Майкоп 2008 удк 37(075) ббк 74. 0я73, 4313.17kb.
- Учебное пособие тверь 2008 удк 519. 876 (075. 8 + 338 (075. 8) Ббк 3817я731-1 + 450., 2962.9kb.
- Учебное пособие Рекомендовано учебно-методическим советом угаэс уфа-2005 удк 330., 1365.17kb.
- Учебно-методическое пособие Нижний Новгород 2010 удк 338. 24(075. 8) Ббк 65. 290-2я73, 2121.39kb.
- Учебное пособие уфа-2007 удк 330. 01 (075. 8) Ббк 65. 02., 836.31kb.
- Учебное пособие Санкт-Петербург 2008 удк 005. 91: 004. 9(075. 8) Ббк 65. 291. 212., 97.7kb.
- Учебное пособие Чебоксары 2007 удк 32. 001 (075. 8) Ббк ф0р30, 1513.98kb.
^ 5. Сложение взаимно перпендикулярных колебаний
Рассмотрим результат сложения двух гармонических колебаний одинаковой частоты
![](images/images/80083-nomer-m2ee9adc7.gif)
![](images/images/80083-nomer-6daaea08.gif)
Разность фаз обоих колебаний равна
![](images/images/80083-nomer-m63d01178.gif)
Уравнение траектории результирующего колебания находится исключением из выражений (11.35) параметра t. Запишем складываемые колебания в виде
![](images/images/80083-nomer-2e7d8021.gif)
После несложных преобразований получим уравнение эллипса:
![](images/images/80083-nomer-m22fa2e91.gif)
Оси эллипса ориентированы относительно координатных осей произвольно. Так как траектория результирующего колебания имеет форму эллипса, то такие колебания называются эллиптически поляризованными.
Ориентация осей эллипса и его размеры зависят от амплитуд складываемых колебаний и разности фаз. Рассмотрим некоторые частные случаи, представляющие физический интерес:
1)
![](images/images/80083-nomer-5d5942e3.gif)
![](images/images/80083-nomer-7ebfe139.gif)
где знак плюс соответствует нулю и четным значениям т (рис. 11.5, а), знак минус – нечетным значениям т (рис. 11.5, б). Результирующее колебание является гармоническим колебанием с частотой
![](images/images/80083-nomer-m2ee9adc7.gif)
![](images/images/80083-nomer-30ccc4d7.gif)
![](images/images/80083-nomer-754c7e0c.gif)
В данном случае имеем дело с линейно поляризованными колебаниями.
2)
![](images/images/80083-nomer-47bbadb5.gif)
![](images/images/80083-nomer-m73bc815c.gif)
![]() | ![]() | ![]() |
Рис.11.5, а | Рис.11.5, б | Рис.11.5, в |
Это уравнение эллипса, оси которого совпадают с осями координат, а его полуоси равны соответствующим амплитудам (рис.11.5, в). Кроме того, если А=В, то эллипс (11.38) вырождается в окружность. Такие колебания называются циркулярно поляризованными колебаниями или колебаниями, поляризованными по кругу.
Если частоты складываемых взаимно перпендикулярных колебаний различны, то замкнутая траектория результирующего колебания довольно сложна. Замкнутые траектории, прочерчиваемые точкой, совершающей одновременно два взаимно перпендикулярных колебания, называются фигурами Лиссажу. Форма этих кривых зависит от соотношения амплитуд, частот и разности фаз складываемых колебаний. На рис. 11.6 представлены фигуры Лиссажу для различных соотношений частот (указаны слева) и разностей фаз (указаны вверху).
![]() | Рис.11.6 |
Отношение частот складываемых колебаний равно отношению числа пересечений фигур Лиссажу с прямыми, параллельными осям координат. По виду фигур можно определить неизвестную частоту по известной или определить отношение частот складываемых колебаний. Поэтому анализ фигур Лиссажу – широко используемый метод исследования соотношений частот и разности фаз складываемых колебаний, а также формы колебаний.
^ 6. Свободные затухающие колебания
Рассмотрим свободные затухающие колебания – колебания, амплитуда которых из-за потерь энергии реальной колебательной системы с течением времени уменьшается. Простейшим механизмом уменьшения энергии колебаний является ее превращение в теплоту вследствие трения в механических колебательных системах.
Закон затухающих колебаний определяется свойствами колебательных систем. Обычно рассматривают линейные системы – идеализированные реальные системы, в которых параметры, определяющие физические свойства системы, в ходе процесса не изменяются. Линейными системами являются, например, пружинный маятник при малых растяжениях пружины (когда справедлив закон Гука). Различные по своей природе линейные системы описываются идентичными линейными дифференциальными уравнениями, что позволяет подходить к изучению колебаний различной физической природы с единой точки зрения, а также проводить их моделирование, в том числе и на ЭВМ.
^ Дифференциальное уравнение свободных затухающих колебаний линейной системы задается в виде
![](images/images/80083-nomer-m15f0430e.gif)
где s – колеблющаяся величина, описывающая тот или иной физический процесс,
![](images/images/80083-nomer-m3df61de4.gif)
![](images/images/80083-nomer-627796ce.gif)
![](images/images/80083-nomer-3e30097e.gif)
Решение уравнения (11.39) рассмотрим в виде
![](images/images/80083-nomer-22cd8eda.gif)
где u = u(t). После нахождения первой и второй производных выражения (11.40) и подстановки их в (11.39) получим
![](images/images/80083-nomer-med4cc3b.gif)
Решение этого уравнения зависит от знака коэффициента перед искомой величиной. Рассмотрим случай, когда этот коэффициент положителен:
![](images/images/80083-nomer-m1cf85e22.gif)
Тогда получим уравнение типа (11.4):
![](images/images/80083-nomer-58f6d443.gif)
Решением его является функция
![](images/images/80083-nomer-24ff5640.gif)
Таким образом, решение уравнения (11.39) в случае малых затуханий есть
![](images/images/80083-nomer-m52587b07.gif)
где
![](images/images/80083-nomer-7177e2bf.gif)
– амплитуда затухающих колебаний,
![](images/images/80083-nomer-378d473.gif)
Промежуток времени
![](images/images/80083-nomer-m653d2f07.gif)
Затухание нарушает периодичность колебаний, поэтому затухающие колебания не являются периодическими и, строго говоря, к ним неприменимо понятие периода или частоты. Однако если затухание мало, то можно условно пользоваться понятием периода как промежутка времени между двумя последующими максимумами (или минимумами) колеблющейся физической величины. Тогда период затухающих колебаний равен
![](images/images/80083-nomer-50aaeb72.gif)
Если A(t) и A(t+T) – амплитуды двух последовательных колебаний, соответствующих моментам времени, отличающимся на период, то отношение
![](images/images/80083-nomer-m516f8a3e.gif)
![](images/images/80083-nomer-606e8167.gif)
– логарифмическим декрементом затухания; N – число колебаний, совершаемых за время уменьшения амплитуды в е раз. Логарифмический декремент затухания – постоянная для данной колебательной системы величина.
Для характеристики колебательной системы пользуются понятием добротности Q, которая при малых значениях логарифмического декремента равна
![](images/images/80083-nomer-m4e36a275.gif)
(так как затухание невелико (
![](images/images/80083-nomer-m697c0170.gif)
Из формулы (11.46) следует, что добротность пропорциональна числу колебаний N, совершаемых системой за время релаксации.
Применим выводы, полученные для свободных затухающих колебаний линейных систем, для механических колебаний. В качестве примера рассмотрим пружинный маятник.
Для пружинного маятника массой т, совершающего малые колебания под действием упругой силы F=-kx, сила трения пропорциональна скорости, т.е.
![](images/images/80083-nomer-566e12ce.gif)
![](images/images/80083-nomer-m1b6f5462.gif)
При данных условиях закон движения маятника будет иметь вид
![](images/images/80083-nomer-m3ee8d3a9.gif)
Используя формулу
![](images/images/80083-nomer-m6754a4bd.gif)
![](images/images/80083-nomer-7480bc08.gif)
получим дифференциальное уравнение затухающих колебаний маятника:
![](images/images/80083-nomer-116097eb.gif)
Из предыдущих выражений вытекает, что маятник колеблется по закону
![](images/images/80083-nomer-5bf764c6.gif)
с частотой
![](images/images/80083-nomer-75a6923a.gif)
Добротность пружинного маятника
![](images/images/80083-nomer-8f87bd8.gif)
При увеличении коэффициента затухания
![](images/images/80083-nomer-m3df61de4.gif)
![](images/images/80083-nomer-m1536164f.gif)
![](images/images/80083-nomer-3aa6c3d5.gif)
^ 7. Вынужденные колебания
Чтобы в реальной механической колебательной системе получить незатухающие колебания, надо компенсировать потери энергии. Такая компенсация возможна с помощью периодически действующей вынуждающей силы, изменяющейся по гармоническому закону:
![](images/images/80083-nomer-7186e7b8.gif)
С учетом силы (11.50) закон движения для пружинного маятника запишется в виде
![](images/images/80083-nomer-m72b104fc.gif)
Используя соответствующие обозначения, придем к уравнению
![](images/images/80083-nomer-me47250b.gif)
Колебания, возникающие под действием внешней периодически изменяющейся силы, называются вынужденными механическими колебаниями.
Решение уравнения (11.51) равно сумме общего решения однородного уравнения (11.47) и частного решения неоднородного уравнения. Частное решение найдем в комплексной форме. Заменим правую часть уравнения (11.51) на комплексную величину
![](images/images/80083-nomer-m53d4ecad.gif)
![](images/images/80083-nomer-m59410d3e.gif)
![](images/images/80083-nomer-72a392b5.gif)
Частное решение этого уравнения будем искать в виде
![](images/images/80083-nomer-m26c0dc2c.gif)
Найдем производные для
![](images/images/80083-nomer-m758c9fab.gif)
![](images/images/80083-nomer-m31a9edf6.gif)
![](images/images/80083-nomer-m53d4ecad.gif)
![](images/images/80083-nomer-249e247f.gif)
![](images/images/80083-nomer-m758c9fab.gif)
![](images/images/80083-nomer-m53d4ecad.gif)
![](images/images/80083-nomer-5e8e843e.gif)
Так как это равенство должно быть справедливым для всех моментов времени, то время t из него должно исключаться. Отсюда следует, что
![](images/images/80083-nomer-739e759.gif)
![](images/images/80083-nomer-m13815d94.gif)
![](images/images/80083-nomer-70e266fb.gif)
![](images/images/80083-nomer-40be57a.gif)
Это комплексное число удобно представить в экспоненциальной форме:
![](images/images/80083-nomer-m79be4799.gif)
![](images/images/80083-nomer-m53d4ecad.gif)
![](images/images/80083-nomer-1452d3ee.gif)
и
![](images/images/80083-nomer-mba46d53.gif)
Следовательно, решение уравнения (11.53) в комплексной форме примет вид:
![](images/images/80083-nomer-15f0ccc0.gif)
Его вещественная часть равна
![](images/images/80083-nomer-4df4c99c.gif)
где
![](images/images/80083-nomer-m730879cd.gif)
![](images/images/80083-nomer-m2c714700.gif)
Таким образом, частное решение неоднородного уравнения (11.52) имеет вид
![](images/images/80083-nomer-4961ec6a.gif)
Решение уравнения (11.52) равно сумме общего решения однородного уравнения
![](images/images/80083-nomer-610c214c.gif)
и частного решения (11.57). Слагаемое (11.58) играет существенную роль только в начальной стадии процесса (при установлении колебаний) до тех пор, пока амплитуда вынужденных колебаний не достигнет значения, определяемого равенством (11.54). Следовательно, в установившемся режиме вынужденные колебания происходят с частотой
![](images/images/80083-nomer-m2ee9adc7.gif)
![](images/images/80083-nomer-m2ee9adc7.gif)
^ 8. Амплитуда и фаза вынужденных колебаний. Резонанс
Рассмотрим зависимость амплитуды А вынужденных колебаний от частоты
![](images/images/80083-nomer-m2ee9adc7.gif)
Из формулы (11.54) следует, что амплитуда А смещения имеет максимум. Чтобы определить резонансную частоту
![](images/images/80083-nomer-75ead0f7.gif)
![](images/images/80083-nomer-m2ee9adc7.gif)
![](images/images/80083-nomer-75ead0f7.gif)
![](images/images/80083-nomer-m6d1a99a1.gif)
Это равенство выполняется при
![](images/images/80083-nomer-m1f07c150.gif)
![](images/images/80083-nomer-1a8c4f16.gif)
![](images/images/80083-nomer-m43419ab2.gif)
Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к частоте
![](images/images/80083-nomer-75ead0f7.gif)
![](images/images/80083-nomer-m4a00bb1f.gif)
![](images/images/80083-nomer-75ead0f7.gif)
![](images/images/80083-nomer-627796ce.gif)
![](images/images/80083-nomer-mcdd276a.gif)
На рис. 11.7 приведена зависимость амплитуды вынужденных колебаний от частоты при различных значениях
![](images/images/80083-nomer-m3df61de4.gif)
![]() | Рис.11.7 |
Из (11.59) и (11.60) вытекает, что чем меньше
![](images/images/80083-nomer-m3df61de4.gif)
![](images/images/80083-nomer-18f6c0e4.gif)
![](images/images/80083-nomer-m6cb0491a.gif)
![](images/images/80083-nomer-m3797f3af.gif)
Из формулы (11.60) вытекает, что при малом затухании (
![](images/images/80083-nomer-m4a00bb1f.gif)
![](images/images/80083-nomer-m5ec14807.gif)
![](images/images/80083-nomer-m6cb0491a.gif)
![](images/images/80083-nomer-m17a34439.gif)
![](images/images/80083-nomer-m4c894f90.gif)
![](images/images/80083-nomer-1c27dd83.gif)
![](images/images/80083-nomer-516796e.gif)
Из выражения
![](images/images/80083-nomer-mba46d53.gif)
![]() | Рис.11.8 |
Зависимость
![](images/images/80083-nomer-m2c714700.gif)
![](images/images/80083-nomer-m2ee9adc7.gif)
![](images/images/80083-nomer-m3df61de4.gif)
![](images/images/80083-nomer-m2ee9adc7.gif)
![](images/images/80083-nomer-m2c714700.gif)
![](images/images/80083-nomer-m1f07c150.gif)
![](images/images/80083-nomer-3601aff1.gif)
![](images/images/80083-nomer-75d64553.gif)
![](images/images/80083-nomer-36d179b8.gif)
![](images/images/80083-nomer-m67aa1775.gif)
![](images/images/80083-nomer-m4a3ef374.gif)
Явления резонанса могут быть как вредными, так и полезными. Например, при конструировании машин и различного рода сооружений необходимо, чтобы собственная частота колебаний их не совпадала с частотой возможных внешних воздействий, в противном случае возникнут вибрации, которые могут вызвать серьезные разрушения. С другой стороны, наличие резонанса позволяет обнаружить даже очень слабые колебания, если их частота совпадает с частотой собственных колебаний прибора. Так, радиотехника, прикладная акустика, электротехника, используют явление резонанса.
![]() | Рис.11.9 |