Программа дисциплины " Системный анализ и принятие решений" Цели и задачи дисциплины
Вид материала | Программа дисциплины |
- Программа учебной дисциплины "системный анализ и моделирование в техносфере" для специальности, 294.34kb.
- Рабочая программа дисциплины Системный анализ и принятие решений Направление подготовки, 138.22kb.
- Программа дисциплины ен. В. 01 Методы оптимизации Цели и задачи дисциплины: Цели преподавания, 118.8kb.
- Аннотация программы учебной дисциплины «Инвестиционный анализ» Цели и задачи дисциплины, 18.27kb.
- Отделение Прикладной Математики и Информатики программа дисциплины, 225.44kb.
- Программа дисциплины " Системный анализ и моделирование" Направление, 165.02kb.
- Аннотация примерной программы учебной дисциплины «Маркетинговый анализ» Цели и задачи, 141.79kb.
- Рабочая программа дисциплины (модуля) «принятие и исполнение государственных решений», 543.17kb.
- Программа дисциплины "Системный анализ" Индекс дисциплины, 192.98kb.
- Рабочая программа дисциплины (модуля) нечеткая математика и принятие решений, 131.73kb.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
| УТВЕРЖДАЮ Руководитель Департамента содержания высшего профессионального образования ________________Л.В. Попов «____»________________2004 г. |
ПРИМЕРНАЯ ПРОГРАММА ДИСЦИПЛИНЫ
Системный анализ и принятие решений
Рекомендуется Министерством образования России
для направления подготовки дипломированных специалистов
658200 – Инноватика
^ Программа дисциплины
“Системный анализ и принятие решений”
1. Цели и задачи дисциплины
Целью изучения дисциплины является овладение материалами системного анализа в объеме и на уровне, позволяющими применить методы этой науки для управления инновационными проектами и процессами.
Дисциплина изучается в 5-ом и 6-ом семестрах. К предшествующим дисциплинам, обеспечивающим данную, относятся: математика, информатика, экономическая теория, а также дисциплины регионального компонента учебного плана, например, программирование, теория инноваций, менеджмент в инновационной сфере, управление инновационными проектами и др.
^ 2. Требования к уровню освоения содержания дисциплины
ЗНАНИЯ основных принципов и подходов системного анализа для построения оптимизационных моделей ситуаций принятия решений, исследования моделей и определения оптимального плана решений;
^ УМЕНИЯ И НАВЫКИ:
- построения операционных моделей систем массового обслуживания (СМО) на базе теорий случайных потоков, марковских процессов, сетей и имитационного моделирования;
- составления оптимизационных моделей, их исследования в среде пакета Матлаб 6,5, включая применение при поиске оптимальных решений для различных моделей набора оптимизаторов из Оптимизационного инструментария Матлаба;
- применения аппарата случайных процессов и теории массового обслуживания при построении операционных моделей СМО и расчета их характеристик.
^
З. Объем дисциплины и виды учебной работы
Вид учебной работы | Всего часов | Семестры | |||
Общая трудоемкость дисциплины | 170 | 5 | 6 | | |
Аудиторные занятия | 102 | 5 | 6 | | |
Лекции | 51 | 5 | 6 | | |
Практические занятия (ПЗ) | 34 | 5 | | | |
Семинары (С) | | | | | |
Лабораторные работы (ЛР) | 51 | | 6 | | |
и(или) другие виды аудиторных занятий | | | | | |
Самостоятельная работа | 68 | 5 | 6 | | |
Курсовой проект (работа) | | | | | |
Расчетно-графические работы | | | | | |
Реферат | | | | | |
И (или) другие виды самостоятельной работы | | | | | |
Вид итогового контроля (зачет, экзамен) | | зачет | экзамен | | |
^ 4. Содержание дисциплины
4.1. Разделы дисциплин и виды занятий
Разделы дисциплины | ЛК | ПЗ | ЛБ | Сам |
Введение 1 .Классификация задач системного анализа | 2 | | | 2 |
2.Принятие решений по многим критериям | 2 | 2 | 2 | 1 |
3.Линейное программирование | 6 | 6 | 4 | 2 |
4. Нелинейное программирование | 10 | 8 | 10 | 4 |
5 .Динамическое программирование | 4 | 2 | 2 | 1 |
6. Дискретное программирование | 6 | 2 | 2 | 2 |
7.Неформальные методы принятия решений | 4 | 2 | | 2 |
8. Экстремальные задачи на графах и теория расписаний | 6 | 2 | 2 | 2 |
9. Использование пакета Матлаб 6,5 для решения оптимизационных задач | | 12 | 15 | 6 |
10.Задачи массового обслуживания(СМО) | 10 | 6 | 6 | 2 |
11 .Задачи имитации СМО | 6 | 2 | 2 | 1 |
Итого: | 56 | 44 | 45 | 25 |
^ 4.2 .Содержание разделов дисциплины
Введение. Место Системного анализа и категория Принятие решения в человеческой деятельности. Основные направления курса.
^ 4.2.1. Классификация задач системного анализа
Классификация задач с учетом вида модели, наличия информации о случайных факторах, состава критериев оптимизации.
^ 4.2.2. Принятие решения по многим критериям
Проблема многокритериальное™ и анализ основных подходов к ее разрешению: линейная свертка, контрольные показатели, главный показатель, метрика в пространстве целевых функций, метод последовательных уступок, компромиссы Парето.
^ 4.2.3. Линейное программирование
Каноническая форма задачи оптимизации линейной целевой функции, алгоритм симплекс-метода в табличной и матричной форме, его геометрическая интерпретация. Двойственность в задачах линейного программирования. Методы решения целочисленных задач.
^ 4.2.4. Нелинейное программирование
Необходимые условия оптимальности для нелинейных целевых функций при отсутствии ограничений (безусловные задачи оптимизации). Методы решения безусловных задач: градиентные, ньютоновские, сопряженных направлений и сопряженных градиентов, переменной метрики и алгоритмы случайного поиска. Выбор длины шага. Сравнение методов.
Задачи условной оптимизации. Необходимые условия оптимальности; теорема Куна-Таккера. Методы решения условных задач: методы, основанные на использовании теоремы Куна- Таккера (неопределенных множителей Лагранжа, Билла); методы проекции направлений, возможных направлений Зойтендейка, методы, использующие штрафные и барьерные функции.
^ 4.2.5. Динамическое программирование
Общая структура алгоритма и использование его для решения экстремальных .задач на графах и оптимизации сепарабельных функций
^ 4.2.6. Дискретное программирование
Метод ветвей и границ и его применение для решения задач: о рюкзаке, о назначении, о коммивояжере, о размещении, о покрытии, а также целочисленных задач линейного программирования.
^ 4.2.7. Неформальные методы принятия решений
Классификация и краткое содержание основных подходов: мозговая атака, метод сценариев, методы структуризации и построения дерева целей, метод экспертных оценок, методы проведения сложных экспертиз.
^ 4.2.8. Экстремальные задачи на графах и теория расписаний
Задачи сетевого планирования, определение критических путей и резервов времени. Частные и общие задачи теории расписаний. Алгоритмы построения расписаний.
^ 4.2.9. Использование пакета Матлаб 6,5 для решения оптимизационных задач
Рабочая среда пакета: окна, настройка среды, правила вычислений в Командном окне, включая вычисления с векторами, матрицами, отрезками арифметических прогрессий; правила формирования и регистрации в пакете М-файлов вычисляемых функций и процедур;
использование окна справки.
Применение оптимизаторов Оптимизационного инструментария Матлаба - поиск оптимальных значений решающих скалярной переменной, вектора и целевой функции и их зависимости от параметров в задачах линейной, нелинейных безусловной, условной и многоцелевой оптимизации с применением оптимизаторов: linprog, fminbnd, fminsearch, quadprog, fmincon, fminimax. Формулы конечно-разностного вычисления в пакете Матлаб первой и второй производных от целевой функции скалярного аргумента, градиента, гессиана и оптимизационной оболочки от скалярной и векторной целевых функций векторного аргумента, и применение этих объектов в оптимизаторах.
Программирование методов оптимизации в среде Матлаба: циклы for и while, оператор условия if, переключатель switch для обработки цикло-индексированных скаляра, вектора и многомерной матрицы; устранение зацикливания в районе оптимума; приемы отладки М-файлов программ.
^ 4.2.10. Задачи массового обслуживания
Классификация задач и моделей систем массового обслуживания (СМО).
Классификация потоков. Простейший поток и его свойства. Марковские процессы и их применение для анализа СМО. Процесс гибели и размножения и модели простейших СМО. Приоритетные СМО. Немарковские СМО и методы их анализа.
^ 4.2.11. Задачи имитации СМО
Содержание процесса имитации и его основные этапы Построение алгоритмов моделирования событий, принцип событийного моделирования и примеры его использования. Генераторы случайных чисел и их проверка.
Имитация случайных факторов на ЭВМ: событий, дискретных и непрерывных случайных величин, процессов и потоков.
^ 5. Лабораторный практикум
№ п/п | № раздела дисциплины | Наименование лабораторных работ |
1. | 1 тема | Классификация задач системного анализа |
2. | 2 тема | Принятие решения по многим критериям |
3. | 3 тема | Линейное программирование |
4. | 4. тема | Нелинейное программирование |
5. | 5. тема | Динамическое программирование |
6. | 6 тема | Дискретное программирование |
7. | 7 тема | Неформальные методы принятия решений |
8. | 8 тема | Экстремальные задачи на графах и теория расписаний |
9. | 9 тема | Использование пакета Матлаб 6,5 для решения оптимизационных задач |
10. | 10 тема | Задачи массового обслуживания |
11. | 11 тема | Задачи имитации СМО |
^ 6. Учебно-методическое обеспечение дисциплины
6.1. Рекомендуемая литература
а) основная литература:
- Ашманов С.А., Тимохов А.В. Теория оптимизации в задачах и упражнениях. М.: Наука, 1991.448 с.
- Моисеев Н.Н. Математические задачи системного анализа. М.: Наука, 1981. 487 с.
- Гнеденко Б.В., Коваленко И.Н. Введение в теорию массового обслуживания. М.: Наука, 1987.336 с.
- Советов Б.Я., Яковлев С.А. Моделирование систем. М.: Высшая школа.1998.- 319 с.
- Бендерская Е.Н., Колесников Д.Н., Пахомова В И. и др. Системный анализ и принятие решений. Учебное пособие. Под ред. Д.Н. Колесникова СПб: СПбГТУ, 2001.206с.
- Бендерская Е.Н., Колесников Д.Н., Пахомова В.И. и др. Моделирование систем с использованием теории массового обслуживания. Под ред. Д.Н. Колесникова СПб: СПбГТУ, 2003. 180с.
б) дополнительная литература:
- Козлов В.Н., Колесников Д.Н., Сиднев А.Г. Решение задач математического программирования. Учебное пособие. СПб.: СПбГТУ, 1992,104с.
- Денисов А. А., Колесников Д.Н. Теория больших систем управления. Л.: Энергоиздат, 1982. 346с.
- Черноруцкий И.Г. Методы оптимизации. Учебное пособие. СПб.: СП6ГТУ, 1998, 96с.
- Бусленко Н.П. Моделирование сложных систем. М.: Наука, 1977. 204 с.
- Жожикашвили В.А., Вишневский В.М. Сети массового обслуживания. Теория и применение к сетям ЭВМ. М.: Радио и связь, 1988. 191 с.
- Технические средства освоения дисциплины Персональный компьютер с установленным пакетом Матлаб 6,5.
^ 6.2. Средства обеспечения освоения дисциплины
Раздаваемые материалы (до 2 стр. на 1 час лекционных занятий). Слайды – иллюстрации лекционного материала и материалов практических занятий. Средства иллюстрации материала с использованием программного приложения Power Point.
^ 7. Материально-техническое обеспечение дисциплины
Учебный класс, оснащенный оргтехникой и мультимедиа средствами (проектор, видеомагнитофон и др). Компьютерный класс.
^ 8. Методические рекомендации по организации изучения дисциплины
По основным разделам программы следует сформировать индивидуальные аналитико-конструктивные или расчетные задания. В 6-м семестре проводится экзамен по материалам 5-го и 6-го семестров.
Программа составлена в соответствии с Временными требованиями к минимуму содержания и уровню подготовки дипломированных специалистов по направлению 658200 –Инноватика.
^ Программу составили:
Д.Н. Колесников, д.т.н., профессор кафедры автоматики и вычислительной техники (СПбГПУ),
О. Р. Рыкин, к.т.н., доцент кафедры теоретических основ инноватики (Санкт-Петербургский Государственный политехнический университет),
В.Н. Козлов, д.т.н. профессор (СПбГПУ).
Программа одобрена на заседании учебно-методического совета по направлению 658200 – Инноватика. Протокол № 1 от 01.03.2003 г.
Сопредседатель Совета УМО по университетскому
политехническому образованию Ю.С. Васильев
Председатель УМС по направлению 658200 – Инноватика И.Л. Туккель
Ученый секретарь С.П. Некрасов