Батышев Константин Александрович исследование

Вид материалаИсследование

Содержание


Кк – коэффициент затвердевания, величина которого находится в пределах 5…8 мм/с (при этом наибольшие значения К
Пуансонное прессование (рис. 1,б)
Таблица 1. Относительные потери давления не внешнее трение
Рисунок 7. - Графики охлаждения отливки (1…3) из алюминия А7 и относительного роста корки x/R (а) и изменения силовых параметров
Подобный материал:
1   2   3   4   5
Рисунок 3. - Изменение коэффициента теплоотдачи во время затвердевания

отливок:1, 2, 3, 4 – сплавы АК18Н, АК12, АК7ч и алюминий А7 соответственно (рн=200 МПа); 5 – все сплавы (атмосферное давление)


Для изучения процесса затвердевания отливки со стороны пуансона разработана и впервые использована методика, основанная на отрыве растущей корки, образовавшейся со стороны торца пуансона, от не затвердевшего сплава, остающегося в матрице. В матрицу пресс-формы, изолированную со стороны рабочей полости слоем теплоизоляционного покрытия (листовым асбестом толщиной 3…5 мм), препятствующим быстрому росту корки со стороны дна и стенок матрицы, заливали расплав, на который воздействовали прессующим пуансоном, торец которого не был защищен теплоизоляционным покрытием. После выдержки под давлением в течение заданного промежутка времени пуансон поднимали в исходное положение, вместе с ним извлекали и твердую «корку», образовавшуюся со стороны его торца и оторвавшуюся от не затвердевшего остатка, остававшегося в полости матрицы. После охлаждения до комнатной температуры толщину «корки» измеряли штангенциркулем в нескольких местах по периметру.

Математическая обработка (метод наименьших квадратов) полученных при этом кривых роста «корки» (рис. 4,а) позволила установить следующую зависимость толщины корки хк от времени прессования п, которую часто называют «законом квадратного корня»:

хк=Кк, (6)

где ^ Кк – коэффициент затвердевания, величина которого находится в пределах 5…8 мм/с0,5 (при этом наибольшие значения Кк характерны для алюминия А7, а наименьшие – для сплава АК12, что связано с различием их теплофизических характеристик). Для одного и того же сплава значения коэффициента затвердевания тем больше, чем больше давление прессования.



а) б)

Рисунок 4. - Характер роста корки во времени:

а – алюминий А7 (1), сплавы АК7ч (2) и АК12 (3) при рн=150 МПа;

б – сплав АК12 при рн=200 (4), 150 (5), 100 (6) и 10 МПа (7)


Анализ кривых охлаждения «корок» (по показаниям термопар, установленных на расстояниях 1; 5 и 10 мм от торца пуансона), показал, что с повышением давления прессования улучшается контакт между торцом пуансона и «коркой», в результате чего температура поверхностного слоя корки (на глубине 1 мм) резко снижается и стабилизируется на уровне 540…530С (давление 10 МПа, сплав АК12) и 475…450С (давление 200 МПа), градиент температур по толщине корки при указанных выше значениях давления составляет 7 и 15С/мм. Время затвердевания слоев на глубине 1; 5 и 10 мм уменьшается от 1,3…1,5; 5…6 и 10…12 с (давление 10 МПа) до 0,5…0,6; 2.2…3 и 5,5…6 с (давление 200 МПа) соответственно. Зависимость между временем затвердевания «корки» и давлением преимущественно линейная. Изменение толщины «корки» во времени представлен на рис. 4,б, а значения коэффициента затвердевания находятся в пределах К = 3,5…4,5 мм/с0,5

Для тепловых процессов, протекающих при формировании «корки» (плоская стенка), толщину корки определяют из следующего выражения:

хк==Кр (7)

где м, Lм, см – плотность, теплота кристаллизации и теплоёмкость твёрдого металла соответственно, tкр – температура кристаллизации металла;

tп – температура поверхности корки; - время.

Расчет Кр по формуле (7) позволил получить следующие его значения – 3,8…7,6 мм/с0,5 (сплав АК12), которые близки к результатам опытов (3,8…6,6 мм/с0,5), рассмотренных выше; при этом небольшое различие в значениях расчетного Кр и экспериментального Кк коэффициентов затвердевания наблюдается при высоких давлениях.

^ Пуансонное прессование (рис. 1,б). При пуансонном прессовании дозу расплава заливают в матрицу пресс-формы и затем выступающей частью пуансона выдавливают вверх до полного заполнения рабочей полости пресс-формы. Особенностью этой схемы ЛКД является то, что пуансон вначале соприкасается с расплавом, удаленным от вертикальных стенок матрицы, и вытесняет его выше уровня заливки, заполняя рабочую полость, оформляемую матрицей и выступающей частью пуансона. При этом коэффициент формообразования Кф, являющийся отношением объема расплава Vф, вытесненного пуансоном во время формообразования отливки, ко всему объему отливки Vот, может изменять в следующих пределах Кф=0,1…0,9.

После окончания формообразования давление пуансоном передается либо только на внутреннюю поверхность отливки, либо на внутреннюю поверхность и верхний торец отливки, либо на внутреннюю поверхность и не на весь верхний торец отливки. Последняя схема (рис. 1,б) была принята при проведении опытов.

Проанализированы гидродинамические режимы ЛКД с учетом неразрывности струи и установлено, что скорость движения расплава в рабочей полости пресс-формы подчиняется следующей закономерности:

vф=vп/[(D-d)2 - 1], (8)

где vп – скорость внедрения пуансона в расплав.

Ее анализ показал, что увеличение толщины стенки (при постоянном наружном диаметре) от 5 до 20 мм (в 4 раза) приводит к снижению скорости vф в 10 раз. Это отражается на качестве отливок. Небольшая скорость опускания пуансона в полости пресс-формы удлиняет время формообразования отливки и иногда приводит к недоливам (особенно при температуре матрицы ниже 50оС и толщине стенки отливки мене 5 мм). Кроме того, при низкой температуре пресс-формы возможно образование спая, распространяющегося в глубь стенки на уровне заливки расплава в матрицу, что наиболее вероятно в тонкостенных отливках.

Впервые проведенные исследования тепловых условий формирования отливок типа стакана (наружный диаметр 60 мм, высота 60 мм, толщина стенки 5; 10; 15 и 20 мм) с установкой термопар в различных точках по высоте и толщине вертикальной стенки, показали, что затвердевание протекает при наличии определенного температурного перепада по высоте, связанного как с тепловыми, так и силовыми условиями формирования отливки. Время затвердевания зон отливки увеличивается при переходе от верхнего торца к нижнему, при этом тепловой центр смещается к зоне сопряжения вертикальной стенки и донной части отливки. Это следует учитывать при разработке конструкции отливки и деталей пресс-формы с целью получения качественных заготовок (без усадочных раковин и пор).

Изучение изменения температуры в поперечном сечении вертикальной стенки, равноудаленном от торцов, позволило выявить наличие определенного температурного перепада в указанном сечении, величина которого составляет 25…85С в момент окончания формообразования отливки и 60…150С – в момент окончания затвердевания теплового центра. Это свидетельствует о последовательном (иногда последовательно-объемном) характере затвердевания вертикальной стенки. Тепловой центр отливки смещается к прессующему пуансону (при прочих равных условиях).

Продвижение фронта затвердевания в вертикальной стенке отливки типа стакана можно выразить в виде параболы (рис. 5):

хi=Кi i2, (9)

где i =н – время с момента окончания заливки расплава в матрицу, с (для расчета роста корки со стороны матрицы); i=в – время с момента окончания формообразования отливки, с (для расчета роста корки со стороны пуансона). Значения коэффициента затвердевания Кi неодинаковы для кривых 1 и 2 (рис. 5), что объясняется различной интенсивностью охлаждения на границах раздела «отливка - матрица» и «отливка - пуансон». При прочих равных условиях величина коэффициента Кi зависит от теплофизических свойств сплава и режимов ЛКД (главным образом от давления прессования и температурных параметров).

Для отливок из сплава АК12 при рн=150 МПа Кi=0,14…0,16 мм/с2 (для расчета продвижения фронта затвердевания со стороны наружной поверхности – со стороны матрицы) и 0,45…0,60 мм/с2 (со стороны внутренней поверхности – со стороны пуансона). Изменение состава сплава, а следовательно, и его теплофизических характеристик приводит к изменению коэффициента Кi.

С увеличением толщины стенки отливки от 5 до 20 мм и содержания кремния в силуминах до 18% время затвердевания возрастает (при прочих равных условиях), хотя и не очень значительно. В первом случае это связано с общим ростом теплосодержания отливки, а во втором – с изменением теплофизических свойств сплава (с увеличением содержания кремния снижается теплопроводность силумина).

Формулу (9) рекомендуется использовать для расчета времени затвердевания и выдержки под давлением отливок в условиях пуансонного прессования.



Рисунок 5. - Кривые продвижения фронта затвердевания со стороны матрицы (1)

и со стороны пуансона (2): а, б, в – толщина стенки отливки 10, 15 и 20 мм


Пуансонно-поршневое прессование (рис. 1,в). При пуансонно-поршневом прессовании расплав свободно заливают в матрицу пресс-формы и затем (после соприкосновения с торцом прессующего пуансона) вытесняет его определенную дозу в одну или несколько полостей, расположенных в пуансоне. При этом торец пуансона соприкасается с коркой, образовавшейся у боковых стенок матрицы, и воздействует на нее – деформирует.

Исследовано затвердевание и охлаждение выступающих элементов отливок, формирующихся в полости пуансона и имеющих следующие размеры: диаметр d=10; 15 и 20 мм; высота h=60 мм. Диаметр внутренней полости матрицы D=60 мм, высота Н была переменной в зависимости от объема полости в пуансоне. Для четкого оформления выступающих элементов отливки в полости пуансона были предусмотрены канавки для удаления воздуха и газов. Отливки изготовляли из сплавов АК7ч и А356.2. Режимы ЛКД: tзал=720…740оС; tм=50…80оС; рн=20…250 МПа; д=3…4 с; п=30…35 с; смазка – машинное масло. Установлено, что при постоянном давлении (250 МПа) время затвердевания увеличивается с увеличением диаметра элемента отливки. Это время небольшим, что связано с вытеснением в полость пуансона не расплава, а жидко-твердой массы.

Исследовано влияние различных параметров на качество получаемых отливок. Установлено, что при формообразовании отливки, а, следовательно, и при заполнении полостей пресс-формы (главным образом в пуансоне) в отливках возникают дефекты следующих видов: 1) нечеткое оформление контуров отливки в полости пуансона, образующееся из-за отсутствия или недостаточной вентиляции пресс-формы; 2) газовые раковины (при отсутствии вентиляции пресс-формы); 3) наличие спаев, распространяющихся от наружной поверхности в тело отливки (или пресс-остатка), вследствие деформации вертикальной «корки».

Дефекты, связанные с нечетким оформлением контуров отливки, устраняются применением сборной конструкции пуансона при условии выполнения между его отдельными элементами вентиляционных зазоров.

Изучение механизма образования спаев в местах деформирования вертикальной корки позволило установить, что этот дефект наиболее характерен для отливок, изготовляемых в недостаточно нагретой пресс-форме (tм100оС). Наличие избыточного количества смазки на вертикальных поверхностях матрицы (например, графитомасляной смазки) также способствует образованию подобных спаев. Выявлено, что вертикальная корка, образующаяся у стенок матриц, деформируется, а ее верхняя часть смещается в тело отливки, где под действием перегретого сплава она частично оплавляется. Для устранения указанных спаев рекомендуется уменьшать толщину и прочность корки за счет повышения начальной температуры матрицы и уменьшения времени выдержки расплава в матрице до приложения давления прессования, а также за счет увеличения припуска на механическую обработку или изменения конструкции отливки путем введения дополнительного элемента – фланца, размеры которого больше габаритов заготовки и который может служить пресс-остатком.

Качество отливок, изготовляемых с использованием схемы пуансонно-поршневого прессования, зависит не только от условий формообразования отливки, но и от величины давления. Его величину рекомендуется рассчитывать по формулам, применяемым для расчета величины давления при поршневом прессовании.

В третьей главе рассмотрены силовые условия формирования отливок при ЛКД.

Поршневое прессование. Как указывалось выше, при поршневом прессовании давление воздействует на вертикальную корку, образовавшуюся вдоль боковых стенок матрицы. Трение на контактных поверхностях «отливка - форма» присущи практически всем технологическим операциям обработки металлов с использованием давления. Усилия трения и развиваемые ими на контактных поверхностях касательные напряжения зависят от многих факторов. Большинство исследователей для решения практических задач по определению деформированного состояния металла при различных технологических процессах принимают касательные напряжения к, по абсолютной величине равные максимальным (условие Мизеса) - к=s/, где s – предел текучести сплава при температурах деформации. Это, по мнению профессора Е.П. Унксова и др., обеспечивает наиболее математически строгое решение технологических задач независимо от метода расчета. Подобное положение принято и при выполнении расчетов в данной работе.

Рассмотрен баланс сил, действующих на формирующуюся отливку в момент окончания затвердевания, и определено давление, необходимое для уплотнения затвердевающей заготовки типа сплошного цилиндра диаметром D и высотой H:

р=Куs[1+], (10)

где Ку – коэффициент, зависящий от коэффициента формообразования отливки Ку = 1 – Кф); при поршневом прессовании Ку=1.

Относительные потери давления на внешнее трение (р = ртр) можно определить из выражения:

, (11)

где р – приложенное давление.

Из анализа выражения (11) вытекает практический вывод о необходимости уменьшения отношения Н/D (при постоянном s) c целью получения отливок повышенного качества. Предположив, что отливка получится плотной, когда более 60% прилагаемого давления будет затрачиваться на ее уплотнение (например, при р0,6рн).Тогда, как видно из рис. 6, значения р/р0,4 обеспечиваются при отношении H/D1, если р100 МПа (область II); а при давлении 50 МПа и H/D0,5 (область I) нельзя получить качественные отливки - без усадочных дефектов, что и подтверждается многочисленными экспериментальными данными. При давлении 200 МПа качественными можно получить отливки с отношением H/D до 3 (область III).



Рисунок 6. – Зависимость относительных потерь давления на внешнее трение от отношения высоты к диаметру отливки: I, II, III – номинальное давление 50, 100 и 200 МПа (нижняя граница каждой области при s=5 МПа, верхняя – при 10 МПа)


Значения s определяли по справочным данным, принимая его значения от 5 до 20 МПа, зная температурное поле отливки в момент окончания затвердевания. Результаты расчета потерь давления на внешнее трение по формуле (11) приведены в табл. 1 (при s=8 МПа):


^ Таблица 1. Относительные потери давления не внешнее трение

Металл, сплав

р/р, при рн, МПа

Примечание

50

100

200

А7

0,91

0,80

0,55

0,62

0,32

0,35

Расчет

Опыт

АК7ч

0,64

0,62

0,60

0,61

0,52

0,55

Расчет

Опыт


Если отношение H/D1, то можно сделать допущение о том, что потери давления на трение на вертикальных поверхностях отливки будут намного больше аналогичных потерь на торцовых поверхностях и последними можно пренебречь. Тогда выражение (11) будет иметь следующий вид

р/р (1+2,31s/р) (H/D) (12)

Если отношение H/D1 (отливки типа фланца или диска), то внешнее трение на торцовых поверхностях будет больше, чем на боковых (вертикальных) поверхностях (ими можно пренебречь), и выражение (11) примет вид:

р/р=1,56s/р (13)

Экспериментальное исследование эффективности воздействия давления на затвердевающую отливку поводили на установке, позволявшей фиксировать температуру заготовки, изменение прилагаемого давления и давления, передаваемого отливкой на дно матрицы, а также относительного перемещения прессующего пуансона.

Результаты одного из опытов приведены на рис. 7, из которого видно, что отливки из алюминия А7 затвердевали в течение 4,5 с после приложения давления (tзал=700оС, tм=50оС). Давление, приложенное через 5 с после окончания заливки, достигало заданной величины через 4,5 с, так что отливка затвердевала под нарастающим давлением – от атмосферного до 100 МПа. После приложения давление в течение первой секунды р = р1. Это продолжалось до тех пор, пока количество твердой фазы не превышало 50%, а давление через жидкую фазу передавалось на дно матрицы и нижнюю месдозу. Затем давление р1 начинало уменьшаться. При 75% твердой фазы оно стабилизировалось и до окончания затвердевания отливки практически оставалось постоянным (р175 МПа), а величина р = 20…30% от приложенного давления.



^ Рисунок 7. - Графики охлаждения отливки (1…3) из алюминия А7 и относительного роста корки x/R (а) и изменения силовых параметров (б): а – 1, 2, 3 – температура отливки на расстоянии 6; 12,5 и 25 мм (центр) от поверхности; б - давление, прикладываемое пуансоном р (1) и фиксируемое нижней месдозой р1 (2), потери давления на трение р (4) и относительное перемещение пуансона h/H (3)


Таким образом, наблюдаются потери давления на внешнее трение, величина которых увеличивается по мере затвердевания отливки. Это означает, что последние участки в тепловом центре отливки затвердевают под давлением, значительно меньшем, чем прикладываемое. Экспериментальные данные о потере давления на внешнее трение приведены в табл. 1 (они близки к расчетным).

Зная величину повышения температуры кристаллизации металла под воздействием давления dT, величину давления, воздействующего на центральные зоны отливки, можно определить, используя формулу (1). Результаты расчета по этой формуле показали, что при приложенном давлении 190 МПа давление, воздействующее на тепловой центр отливки снижается до 100 МПа, усадочные раковины и поры в заготовке отсутствуют; при величине воздействующего давления 100 МПа давление в тепловом центре не превышает 50 МПа, а отливка имеет усадочные раковины и поры.

Экспериментально установлено, что чем больше высота и отношение H/D отливки, тем больше относительные потери давления на внешнее трение (рис. 8); это подтверждает приведенные выше результатов расчетов. Если в центральной зоне отливки еще имеется жидкая фаза, то относительные потери давления мало зависят от высоты отливки при H/D1,2; при H/D=1,6…2 значения р/р немного возрастают, в момент окончания затвердевания р/р заметно повышаются, особенно в отливках с отношение H/D1.