Детали машин это курс, изучающий назначение, классификацию и основы расчета деталей общего типа. Механические движения это изменение положения тела в пространстве и во времени
Вид материала | Документы |
- Программа вступительного экзамена в аспирантуру по специальной дисциплине 05. 02., 266.3kb.
- Программа дисциплины по кафедре Детали машин детали машин и механизмов, 575.22kb.
- Рабочей программы дисциплины Детали машин и основы конструирования по направлению подготовки, 37.93kb.
- Программа дисциплины по кафедре Детали машин детали машин и основы конструирования, 355.21kb.
- А. Н. Фоменко Метод расчета износа деталей транспортных средств для целей определения, 230.85kb.
- Название курса: Детали машин, 59.22kb.
- М. А. Копин Лабораторные и лабораторно-практические работы по дисциплине «Детали машин, 380.55kb.
- Отсчета, 103.48kb.
- Примерная программа дисциплины детали машин и основы конструирования Рекомендуется, 287.02kb.
- Краткое содержание: Прямая задача динамики машин. Понятие о динамической модели машины, 252.59kb.
Основные определения и понятия технической механики.
- Теоретическая механика – это наука о равновесии тел в пространстве, о системах сил, и о переходе одной системы в другую.
- Сопротивление материалов – наука о расчетах конструкций на прочность, жесткость и устойчивость.
- Детали машин – это курс, изучающий назначение, классификацию и основы расчета деталей общего типа.
Механические движения – это изменение положения тела в пространстве и во времени.
Материальная точка – это тело, формами и размерами которого можно пренебречь, но которое обладает массой.
Абсолютно твердое тело – это тело, у которого расстояние между любыми двумя точками остается неизменным при любых условиях.
Сила – мера взаимодействия тел.
Сила – векторная величина, которая характеризуется:
- точкой приложения;
- величиной (модулем);
- направлением.
Аксиома статики.
- Изолированная точка – это материальная точка, которая под действием сил движется равномерно прямолинейно, либо находится в состоянии относительного покоя.
- две силы равны, если они приложены к одному телу, действуют вдоль одной прямой и направлены в противоположные стороны, такие силы называются уравновешивающими.
- Не нарушая состояния тела к нему можно приложить или от него отбросить уравновешивающую систему сил.
Следствие: всякую силу можно переносить вдоль линии её действия, не изменяя действия силы на данное тело.
- Равнодействующая двух сил приложенных в одной точке, приложена в той же точке и является по величине и направлению диагональю параллелограмма, построенных на данных силах.
- Всякому действию есть равное по величине и направлению противодействие.
Связи и их реакции.
Свободное тело – это такое тело, перемещение которого в пространстве ничего не меняет.
Те тела, которые ограничивают перемещение выбранного тела называются связями.
Силы, с которыми связь удерживают тело называются реакциями связей.
При решении задач мысленно связи отбрасываются и заменяются реакциями связей.
- Связь в виде гладкой поверхности
- Гибкая связь.
- Связь в виде жесткого стержня.
- Опора в точке или опора углу.
- Шарнирно подвижная опора.
- Шарнирно неподвижная опора.
Система сил.
Система сил – это совокупность.
Система сил
Плоская Пространственная
Сходящиеся Параллельные Сходящиеся Параллельные
Плоская система сходящихся сил.
Плоская система сходящихся сил – это система сил линии действия, которых сходятся в одной точке называются сходящимися.
Пусть дана система сходящихся сил F1, F2, F3, линии, действия которых сходятся в точке О. для того, чтобы заменить эту систему сил равнодействующей силой необходимо:
- Перенести силы в точку О (на основании следствия из аксиом).
- Почленно сложить вектора сил (на основании аксиомы 4). Равнодействующая всегда направлена из начала первого вектора в конец последней. В результате векторного сложения образуется силовой многоугольник.
Плоская система сходящихся сил имеет два условия равновесия:
- Геометрическое условие: плоская система сходящихся сил находится в равновесии, если силовой многоугольник замкнут, т. е. равнодействующая равна нулю.
- Аналитическое условие: плоская система сходящихся сил находится в равновесии если алгебраические суммы проекций всех сил системы на оси х и у равны нулю.
∑Fix = 0
∑Fiy = 0
Пара сил.
Пара сил – это система двух равных сил, лежащих на параллельных прямых и направленных в противоположные стороны.
Действие пары на тело определяется моментом на пару.
Момент – это произведение модуля силы на плечо.
Плечо – кратчайшее расстояние между линиями действия силы.
Если пара поворачивает плечо по ходу часовой стрелки, то момент считается положительным, а если против хода, то отрицательным.
Пара сил обладает свойствами:
- не нарушая действия пары на тело можно её переносить в любую точку плоскости.
- Две пары сил являются эквивалентными, если их моменты равны.
Система пар сил находится в равновесии, если сумма моментов всех пар системы равно нулю.
∑Mi(F) = 0
Произвольная плоская система сил.
Момент силы относительно точки.
Плечо – это кратчайшее расстояние от выбранной точки до линии действия силы.
Момент силы относительно точки может быть равен нулю, если сила проходит через выбранную точку.
Между моментом пары и моментом силы есть разница: момент пары есть величина постоянная, а момент силы относительно точки по знаку зависит от выбора точки.
Три формы равновесия произвольной плоской системы сил.
- Произвольная плоская система сил находится в равновесии, если алгебраические суммы проекций всех сил на оси х и у равны нулю, а также равна нулю сумма моментов всех сил относительно любой точки.
∑Fix = 0
∑Fiy = 0
∑Mi(Fi) = 0
- Произвольная плоская система сил находится в равновесии, если алгебраические суммы проекций всех сил на одну из осей х или у равна нулю, а также, если равны нулю алгебраические суммы моментов всех сил относительно любых двух точек.
∑Fix = 0
∑MА(Fi) = 0
∑MВ(Fi) = 0
- Произвольная плоская система сил находится в равновесии, если алгебраические суммы моментов всех сил относительно любых трех точек, не лежащих на одной прямой.
∑MА(Fi) = 0
∑MВ(Fi) = 0
∑Mi(Fi) = 0
Пространственная система сил.
Пространственная система сил – это система сил, как угодно расположенных в пространстве.
Суммой трех сил, сходящихся в одной точке является сила по величине и направлению, совпадающая с диагональю параллелепипеда, построенного на заданных силах.
Момент силы относительно оси равен произведению модуля силы на кратчайшее расстояние от выбранной оси до линии действия силы.
Момент может равняться нулю, если:
- Сила лежит на выбранной оси.
- Сила пересекает выбранную ось.
- Сила параллельна оси.
При приведении пространственной системы сил к точке, её можно заменять на эквивалентную систему с главным вектором и главным моментом.
Главный вектор – это геометрическая сумма всех сил системы.
Главный момент – это сумма моментов, компенсирующих пар.
Пространственная система сил находится в равновесии, если алгебраические суммы проекций всех сил на оси x, y, z равны нулю, а также равны нулю моменты всех сил относительно этих же осей.
Кинематика.
Кинематика изучает виды движения.
Формулы связи:
S=φr
υ=ωr
αt=εr
αn=ω2r
Плоско – параллельное движение.
Плоско – параллельное движение – это такое движение, при котором фигура полученная пересечением данного тела с выбранной плоскостью остается параллельной самой себе за все время движения.
При плоско – параллельном движении всегда существует точка, абсолютная скорость которой в данный момент времени равна нулю. Каждый последующий момент – это будет другая точка.
ДИНАМИКА.
Динамика изучает виды движения тела в зависимости от приложенных сил.
Аксиомы динамики:
- всякая изолированная точка находится в состоянии относительного покоя, или равномерного прямолинейного движения до тех пор, пока приложенные силы не выведут её из этого состояния.
- Ускорение тела прямопропорциональных действующей на тело силе.
- Если на тело действует система сил, то его ускорение будет складываться из тех ускорений, которые бы тело получало от каждой силы в отдельности.
- Всякому действию есть есть равное по величине и противоположно направлению противодействие.
Центр тяжести – это точка приложения силы тяжести, при повороте тела центр тяжести не меняет своего положения.
Сила инерции.
Сила инерции – всегда направлена в противоположную сторону ускорению и приложена к связи.
Pu = -ma
При равномерном движении, т.е. когда а=0 сила инерции равна нулю.
При криволинейном движении раскладывается на две составляющие: на нормальную силу и на касательную.
Put=mat=mεr
Pun=man=mω2r
Метод кинематики: условно прикладывают к телу силу инерции можно считать, что внешние силы реакции связей и сила инерции образуют уравновешенную систему сил. F+R+Pu=0
Сила трения.
Трение делится на два вида: трение скольжения и трение качения.
Законы трения скольжения:
- Сила трения прямопропорциональной нормальной реакции опоры и направлена вдоль соприкасающихся поверхностей в противоположную сторону движению.
- Коэффициент трения покоя всегда больше коэффициента трения движения.
- Коэффициент трения скольжения зависит от материала и физически – механических свойств трущихся поверхностей.
Условие самоторможения.
Трение приводит к снижению срока службы деталей к их износу и нагреву. Для того, чтобы этого избежать необходимо вести смазку. Повысить качество обработки поверхности деталей. В трущихся местах применять другие материалы.
- По возможности заменить трение скольжения трением качения.
Основные понятия.
Сопротивления материалов.
Сопротивление материалов – это наука, изучающая методы расчета конструкций на прочность, жесткость и устойчивость.
Прочность – это способность конструкции выдерживать заданную нагрузку в течение срока службы без разрушения и появления остаточных деформаций.
Жесткость – это способность конструкции сохранять первоначальную форму упругого равновесия.
Устойчивость – это способность конструкции сохранять первоначальную форму упругого равновесия.
Все тела разделены на 3 группы:
- Брус – это тело, один из размеров которого (длина) во много раз больше двух других.
- Оболочка – это тело, один из размеров которого (толщина) во много раз больше двух других.
- Массив – это тела, все размеры которого равны.
Классификация нагрузок:
- По характеру действия:
- Статические;
- Циклические;
- Динамические.
- По способу приложения:
- Поверхостные;
- Объемные.
- Поверхостные;
Метод сечения.
Мысленно разрезаем нагруженный силами груз, для того, чтобы определить внутренние силовые факторы, для этого отбрасываем одну часть груза. Заменяем межмолекулярную систему сил эквивалентной системой с главным вектором и главным моментом. При разложении главного вектора и главного момента по осям x, y, z. устанавливаем вид деформации.
Внутри сечения бруса может возникать внутри силовых факторов, если возникает сила N (продольная сила), то брус растянут или сжат.
Если возникает Мк (крутящий момент) то деформация кручения, сила Q (поперечная сила) то деформация сдвига среза или изгиба. Если возникает Мих и Миz (изгибающий момент) то деформация изгиба.
Метод сечения позволяет определить напряжение в сечении груза.
Напряжение – это величина, показывающая, сколько нагрузки приходится на единицу площади сечения.
P = F/A
Эпюра – это график изменения продольных сил , напряжений, удлинений, крутящих моментов и т. д.
Растяжение (сжатие) – это такой вид деформации, при котором в поперечном сечении бруса возникает только продольная сила.
Правила знаков для нагрузки.
Если нагрузка направлена от сечения бруса, то продольная сила будет равна ей со знаком «плюс», если нагрузка направлена к сечению, то продольная сила будет со знаком «минус».
Закон Гука.
В пределах упругих деформаций нормальное напряжение прямо – пропорционально продольным деформациям.
б = Еε
Е – модуль Юнка, коэффициент, который характеризует жесткость материала при напряжениях, зависит от материала, образца из справочных таблиц.
Нормальное напряжение измеряется в Паскалях.
ε=Δl/l
Δ l= l1- l
V=ε’/ε
Δ l=Nl/AE
Расчет на прочность.
np≥[n]
|бmax|≤[б]
np – расчетный коэффициент запаса прочности.
[n] – допустимый коэффициент запаса прочности.
бmax – расчет максимального напряжения.
бmax= N/A≤[б]
Кручение.
Кручение – такой вид деформации, при котором в поперечном сечении бруса возникает только один внутренний силовой фактор – крутящий момент. Кручению повергаются валы, оси. И пружины. При решении задач строятся эпюры крутящих моментов.
Правило знаков для крутящих моментов: Если вращающий момент поворачивает вал со стороны сечения по ходу часовой стрелки, то крутящий будет ему равен со знаком +, против – со знаком -.
Условие прочности.
Τкр=|Ммах|/W<=[ Τкр] – условие прочности
W=0,1d3-[M3] – момент сопротивления сечения (для круглого)
Θ=|Мк мах|*е/G*Yx<= [Θo]
Yx – осевой момент инерции
G – модуль сдвига, МПа, характеризует жёсткость материалов при кручении.
Изгиб.
Чистый изгиб – такой вид деформации, при котором в сечении бруса возникает только изгибающий момент.
Поперечный изгиб – изгиб, при котором в поперечном сечении вместе с изгибающим моментом возникает поперечная сила.
Прямой изгиб – такой изгиб, при котором силовая плоскость совпадает с одной из главных плоскостей бруса.
Главная плоскость бруса – плоскость, проходящая через одну из главных осей поперечного сечения бруса.
Главная ось – ось, проходящая через центр тяжести бруса.
Косой изгиб – изгиб, при котором силовая плоскость не проходит ни через одну из главных плоскостей.
Нейтральный слой – граница, проходящая между зонами сжатия и растяжения (напряжение в нём равно 0).
Нулевая линия - линия, полученная пересечением нейтрального слоя с плоскостью поперечного сечения.
Правило знаков для изгибающих моментов и поперечных сил:
Если силы направлены от бруса, то F=+Q, а если к брусу, то F=-Q.
Если края бруса направлены вверх, а середина вниз, то момент положительный, а если наоборот, то момент отрицательный.
Построение эпюр поперечных сил и изгибающих моментов по характерным точкам.
Характерными точками являются точки начала и конца бруса, точки, где приложены сосредоточенные силы, реакции опор, пара сил и точка начала и конца распределённой нагрузки.
Между поперечными силами, изгибающими силами, изгибающими моментами и распределённой нагрузкой существуют дифференциальные зависимости, которые позволяют сделать выводы о характере эпюр в зависимости от приложенной нагрузки.
Выводы для эпюр поперечных сил:
- на участке, где приложена распределённая нагрузка, эпюра изображается наклонной линией.
- там, где приложена сосредоточенная сила, эпюра – прямая линия, параллельная продольной оси балки
- под сечением балки, где приложена сосредоточенная сила, в эпюре скачок, равный этой силе.
- там, где приложена пара сил (момент), эпюра не меняет своего значения.
Выводы для эпюр изгибающих моментов:
- на участке, где приложена распределённая нагрузка, эпюра изображается квадратной параболой. Выпуклость параболы навстречу нагрузке.
- Там, где приложена сосредоточенная сила – наклонная линия
- Под сечением балки, где приложен момент, в эпюре скачок, равный этому моменту.
- Эпюра изгибающих моментов принимает экстремальные значении в тех сечениях, где поперечна сила равна 0.
Детали машин.
Основные понятия и определения.
Деталь – это изделие, полученное из однородного по марке материала без сборочных операций.
Сборочная единица – изделие, полученное с помощью сборогчных операций.
Механизм – комплекс деталей и сборочных единиц, созданных с целью выполнения определённого вида движения ведомого звена с заранее заданным движением ведущего звена.
Машина – это комплекс механизмов, созданный с целью превращения одного вида энергии в другой, либо для совершения полезной работы, с целью облегчения человеческого труда.
Механические передачи.
Передачи – это механизмы, предназначенные для передачи движения.
1)По способу передачи движения:
а) зацеплением (зубчатая, червячная, цепная);
б) трением (фрикционная);
2) По способу соприкосновения:
а) непосредственным касанием (зубч., червяч., фрикц.);
б) с помощью передаточного звена.
Зубчатая – состоит из шестерни и зубчатого колеса и предназначена для передачи вращения.
Достоинства: надёжность и прочность, компактность.
Недостатки: шум, высокие требования к точности изготовления и монтажа, впадины – концентраторы напряжений.
Классификация.
- цилинрические (оси 11), конические (оси пересек.), винтовые (оси скрещиваются).
- По профилю зуба:
а) эвольвентные;
б) циклоидальные;
в) с зацеплением Новикова.
- По способу зацепления:
а) внутреннее;
б) внешнее.
- По расположению зубьев:
а) прямозубая;
б) косозубая;
в) мевронная.
5) По конструкции:
а) открытые;
б) закрытые.
Применяются в станках автомобилях, часах.
Червячная передача состоит из червяка и червячного колеса, оси которых скрещиваются.
Служит для передачи колесом вращения.
Достоинства: надёжность и прочность, возможность создания самоторможения передачи, компактность, плавность и бесшумность работы, возможность создания больших предаточных чисел.
Недостатки: тихоходность, большой нагрев передачи, применение дорогостоящих антифрикционных материалов.
Классификация.
1) По виду червяка:
а) цилиндрические;
б) глобоидальные.
2) Попрофилю зуба червяка:
а) эвольвентные;
б) коволютные;
в) архимедов.
3) По числу заходов:
а) однозаходные;
б) Многозаходные.
4) Поотношению червяка к червячному колесу:
а) с нижним;
б) с верхним;
в) с боковым.
Применяются в станках, подъёмных устроцствах.
Ременная передача состоит из шкивов и ремня. Служит для передачи вращения на расстояние до 15 метров.
Достоинства: плавность и бесшумность работы, простота конструкции, возможность плавного регулирования предаточного числа.
Недостатки: проскальзывание ремня,ограниченый срок службы ремня, необходимость натяжных устройств, невозможность применения во взрывоопасных средах.
Применяется в конвеерах, приводах станков, в текстильной промышленности, в швейных машинах.
Приборостроение.
Ремни – кожа, резина.
Шкивы – чугун, алюминий, сталь.
Цепная передача состоит из цепи и шестерён. Служит для передачи вращательного момента на расстояние до 8 метров.
Достоинства: надёжность и прочность, отсутствие проскальзывания, меньшее давление на валы и подшипники.
Недостатки: шум, большой износ, провисание, затруднён подвод смазки.
Материал – сталь.
Классификация.
1) По назначению:
а) грузовые,
б) натяжные,
в) тяговые.
2) По конструкции:
а) роликовые,
б) втулочные,
в) зубчатые.
Применяются в велосипедах, приводах станков и автомобилей, конвеерах.
Валы и оси.
Вал – это деталь, предназначенная для поддержания других деталей с целью передачи вращательного момента.
В прцессе эксплуатации вал испытывает изгиб и кручение.
Ось – это деталь предназначенная только для поддержания на неё насаженных другихдеталей, в прцессе работы ось испытывает только изгиб.
Классификация валов.
1) Поназначению:
а) прямые,
б) коленчатые,
в) гибкие.
2) По форме:
а) гладкие,
б) ступенчатые.
3) По сечению:
а) сплошные,
б) полые.
Элементы вала.
Валы часто изготавливают из стали-20, стали20х.
Расчёт валов:
кр=|Mmax|\W<=[кр]
и=|Mmax|W<=[и]
Оси только на изгиб.
W – момент сопротивления сечения [м3].
Муфты.
Муфты – это устройства, предназначенные для соединения валов с целью передачи вращательного момента и обеспечивающие остановку узла без выключения двигателя, а так же предохраняющие работу механизма при перегрузках.
Классификация.
1) Нерасцепляемые:
а) жёсткие,
б) ?
Достоинства: простота конструкций, низкая стоимость, надёжность.
Недостатки: может соединять валы одинаковых диаметров.
Материал: сталь-45, серый чугун.
2) Управляемые:
а) зубчатая,
б) фрикционная.
Достоинства: простота конструкции, разные валы, возможно отключение механизма при перегрузке.
3) Самодействующие:
а) предохранительные,
б) обгонные,
в) центробежные.
Достоинства: надёжность в работе, передают вращение при достижении определённой частоты вращения за счёт сил инерции.
Недостатки: сложность конструкции, большой износ кулачков.
Выполняются из серых чугунов.
4) Комбинированные.
Муфты подбираются по таблице ГОСТа.
Неразъёмные соединения – это такие соединения деталей, которые невозможно разобрать без разрушения деталей, входящих в это соединение.
К ним относятся: заклёпочные, сварные, паяные, клеевые соединения.
Заклёпочные соединения.
1) По назначению:
а) прочные,
б) плотные.
2) По расположению заклёпок:
а) параллельное,
б) в шахматном порядке.
3) По числу заходов:
а) однорядные,
б) многорядные.
Достоинства: хорошо выдерживают ударные нагрузки, надёжность и прочность, обеспечивают визуальный контакт за качеством шва.
Недостатки: отверстия – концентраторы напряжений и снижают предел прочности, утяжеляют конструкцию, шумное производство.
Сварочные соединения.
Сварка – это процесс соединения деталей путём их нагрева до т-ры плавления, либо пластической деформацией с целью создания неразъёмного соединения.
Сварка:
а) газовая,
б) электродная,
в) контактная,
г) лазерная,
д) холодная,
е) сварка взрывом.
Сварные соединения:
а) угловое,
б) стыковое,
в) нахлёст,
г) тавровое,
д) точечное.
Достоинства: обеспечивает надёжное гермитичное соединение, возможность соединения любых материалов любой толщины, бесшумность процесса.
Недостатки: изменение физических и химических свойств в зоне шва, коробление детали, сложность проверки качества шва, требуются специалисты высокой квалификации, плохо выдерживают повторно-переменные нагрузки, шов – концентратор напряжения.
Клеевые соединения.
Достоинства: не утяжеляет конструкцию, низкая стоимость, не требует специалистов, возможность соединять любые детали любой толщины, бесшумность процесса.
Недостатки: “старение” клея, низкая теплостойкость, необходимость предварительной зачистки поверхности.
Все неразъёмные соединения рассчитываются на срез.
ср=Q\A<= [ср]
Резьбы(классификация).
1) По назначению:
а) крепёжные,
б) ходовые,
в) уплотнительные.
2) По углу при вершине:
а) метрические(60),
б) дюймовая(55).
3) По профилю:
а) треугольная,
б) трапециидальная,
в) упорная,
г) круглая,
д) прямоугольная.
4) По числу заходов:
а) однозаходная,
б) многозаходная.
5) По направлению винтовой линии:
а) левые,
б) правые.
6) По поверхности:
а) внешняя,
б) внутренняя,
в) цилиндрическая,
г) коническая.
Резьбовые поверхности можно выполнить:
а) вручную,
б) на станках,
в) на автоматических машинах накатыванием.
Достоинства: простота конструкции, надёжность и прочность, стандартизация и взаимозаменяемость, низкая стоимость, не требует специалистов, возможность соединения любых материалов.
Недостатки: резьба – концентратор напряжений, износ соприкосающихся поверхностей.
Материал – сталь, цветные сплавы, пластмасса.
Шпоночные соединения.
Шпонки бывают: призматические, сегментные, клиновые.
Достоинства: простота конструкции, надёжность в работе, длинные шпонки – направляющие.
Недостатки: шпоночный паз – концентратор напряжений.
Шлицевые соединения.
Бывают: прямобокие, треугольные, эвольвентные
Достоинства: надёжность в работе, равномерное распределение по всему сечению вала.
Недостатки: сложность изготовления.
1Н=0,1кгс
R=sqr(x2+y2)для неподвижных опор
по х - cos данного угла
по у - sin этого угла или cos (90-угол)
если большая сторона треугольника то берем 2/3
если маленькая то - 1/3
принцип дАламбера:F+R+Pu=0
Tтр=fo*N
P=F/A=sqrG2+Tx2+Tz2 - полное напряжение
L=(N*L)/(A*E)-вторая запись закона гука
G=N/A
Условие прочности при растяжении
Np>=[n]
|Gmax|<=[G]
Условие прочности на срез
Tcp=Q/(Acp*n*m)<=[Tcp]
Acp=(pi*d2)/4 - для болтов заклепок
Acp=b*l - для шпонок
n - колво заклепок ...
m - колво плоскостей среза
Условие прочности на смятие
Gсм=Q/(Aсм*n)
Aсм=d*Smin - для болтов заклепок
Aсм=(h-t)*l - для шпонок
Mвр=P/w
P=Tz*w
Условие прочности и жесткости при кручении
Tкр=|Mmax|/W<=[Tкр] - условие прочности
O - тета
O=(|Mmax|*l)/G*Yx
Yx - осевой момент инерции
G - модуль сдвига
Расчет на прочность и жесткость при изгибе
Gи=|Mmax|/W<=[Gи]
f<=[f] [м] - условие жесткости
f - прогиб
O<=[O] [рад] - угол поворота
Расчет валов и осей
Tk=|Mk max|/W<=[Tкр] - условие прочности на кручение
Gи=|Mи max|/W<=[Gи] - условие прочности на изгиб
оси расчитываются токо на изгиб