Ы, включают методы обработки данных многих ранее существовавших автоматизированных систем (АС), с другой обладают спецификой в организации и обработке данных
Вид материала | Документы |
Содержание4.7. Оверлейные структуры 4.5. Трехмерные модели Топологическая сложность Точность измерения Остается нерешенной проблема автоматизированного преобразования растровых моделей в векторные. |
- Методы анализа данных, 17.8kb.
- Методика определения актуальных угроз безопасности персональных данных при их обработке, 175.98kb.
- Понятия о базах данных и системах управления ими. Классификация баз данных. Основные, 222.31kb.
- Анализ и оценка дисциплин обслуживания требований (запросов) с учетом их приоритетов, 20.53kb.
- Программа дисциплины «Методы обработки экспериментальных данных», 318.77kb.
- «Прикладная информатика (по областям)», 1362.72kb.
- Методические указания к курсовому проектированию по курсу "Базы данных" Составитель:, 602.97kb.
- Концепция баз данных уже давно стала определяющим фактором при создании эффективных, 293.58kb.
- Доклад Тема: «Информационные технологии», 58.36kb.
- Рабочей программы дисциплины Структуры и алгоритмы обработки данных по направлению, 21.62kb.
4.7. Оверлейные структуры
Цифровая карта может быть организована как множество слоев (покрытий или карт-подложек). Концепция послойного представления графической информации заимствована из систем CAD, однако в ГИС она получила качественно новое развитие.
Принципиальное отличие состоит в том, что слои в ГИС могут быть как векторными, так и растровыми, причем векторные слои обязательно должны иметь одну из трех характеристик векторных данных, т.е. векторный слой должен быть определен как точечный, линейный или полигональный дополнительно к его тематической направленности.
Другое важное отличие послойного представления геоинформационных векторных данных заключается в том, что они являются объектными, т.е. несут информацию об объектах, а не об отдельных элементах объекта, как в САПР.
Слои в ГИС являются типом цифровых картографических моделей, которые построены на основе объединения (типизации) пространственных объектов (или набора данных), имеющих общие свойства или функциональные признаки. Такими свойствами могут быть: принадлежность к одному типу координатных объектов ( точечные, линейные полигональные); принадлежность к одному типу пространственных объектов (жилые здания, подземные коммуникации, административные границы и т.д.); отображение на карте одним цветом.
В качестве отдельных слоев можно объединять данные, полученные в результате сбора первичной информации.
Совокупность слоев образует интегрированную основу графической части ГИС (рис. 4.11). Принадлежность объекта или части объекта к слою позволяет использовать и добавлять групповые свойства объектам данного слоя. А как известно из теории обработки данных, именно их групповая обработка является основой повышения производительности автоматизированных систем [11].
Рис. 4.11. Пример слоев интегрированной ГИС
Слои могут иметь как векторные, так и растровые форматы. Однако многие ГИС допускают возможность работы со слоями только векторного типа, а растр используется в качестве подложки. В связи с этим следует отметить возможности системы ER Mapper трансформировать растровое изображение снимка в заданную картографическую проекцию.
Данные, размещенные на слоях, могут обрабатываться как в интерактивном, так и в автоматическом режиме. С помощью системы фильтров или заданных параметров объекты, принадлежащие слою, могут быть одновременно масштабированы, перемещены, скопированы, записаны в базу данных. В других случаях (при установке других режимов) можно наложить запрет на редактирование объектов слоя, запретить их просмотр или сделать невидимыми.
Многослойная организация электронной карты при наличии гибкого механизма управления слоями позволяет объединить и отобразить не только большее количество информации, чем на обычной карте, но существенно упростить анализ картографических данных с помощью селекции данных, необходимых для визуализации и механизма "прозрачности" цифровой карты.
Таким образом, разбиение на слои позволяет решать задачи типизации и разбиения данных на типы, повышать эффективность интерактивной обработки и групповой автоматизированной обработки, упрощать процесс хранения информации в базах данных, включать автоматизированные методы пространственного анализа на стадии сбора данных и при моделировании, упрощать решение экспертных задач.
4.5. Трехмерные модели
Большинство ГИС хранят информацию о точках местности в виде трехмерных координат. Однако для многих приложений ГИС, таких, как построение карт, трехмерные координаты преобразуют в двухмерное представление, т.е. строят двухмерные (2D) модели.
Со второй половины 90-х гг. заметна тенденция к построению трехмерных (3D) моделей. С одной стороны, это продиктовано решением практических задач, с другой - увеличением мощности вычислительных ресурсов, что необходимо для трехмерного моделирования. Такая модель должна соответствовать отображению трехмерной реальности, по возможности близкой к той, что видит человеческий глаз на местности.
В настоящее время существуют два основных способа представления трехмерных моделей в ГИС.
Первый способ, назовем его псевдотрехмерным, основан на том, что создается структура данных, в которых значение третьей координаты Z (обычно высота) каждой точки (X, Y) записывается в качестве атрибута. При этом значение Z может быть использовано в перспективных построениях для создания изображений трехмерных представлений. Поскольку это не истинное трехмерное представление, его часто именуют 2,5-мерным (два-с-половиной-мерным).
Такие 2,5-мерные модели дают возможность эффективного решения ряда задач:
• представление рельефа и других непрерывных поверхностей на базе ЦМР или TIN;
• расчет перспективной модели для любой задаваемой точки обзора;
• "натяжение" дополнительных слоев на поверхность с использованием цвета и световых эффектов;
• визуальное преобразование одних классов данных в другие (например, объемный слой промышленных выбросов преобразовать в изображение экологической карты и результирующей карты действия на окружающую растительность);
• создание динамической модели "полета" над территорией. Второй способ - создание истинных трехмерных представлений - структур данных, в которых местоположение фиксируется в трех измерениях (X, У, Z). В этом случае Z- не атрибут, а элемент местоположения точки. Такой подход позволяет регистрировать данные в нескольких точках с одинаковыми координатами Х и У, например, при зондировании атмосферы или при определении объемов горных выработок.
Истинные трехмерные представления позволяют:
• наглядно изображать (визуализировать) объемы;
• решать задачи, связанные с моделированием объемов;
• решать новый класс задач - разработка трехмерных ГИС;
• производить синтез трехмерных структур. Оба способа трехмерных представлений пространственной информации имеют несколько важных приложений:
• проектирование инженерных и промышленных сооружений (шахты, карьеры, плотины, водохранилища);
• моделирование геологических процессов;
• моделирование трехмерных потоков в газообразных и жидкостных средах.
В ГИС наряду с цифровыми моделями местности, которые, как правило, отражают статические свойства, широко используются динамические модели, например модель явления.
Трехмерные явления характеризуются несколькими свойствами: распределение, геометрическая сложность, топологическая сложность, точность измерения, точность представления.
Распределение может быть непрерывное (например, поле поверхности) и дискретное (например, рудные тела).
Топологическая сложность обусловливается связями внутри объекта. Например, составной объект состоит из таких же, но более мелких объектов одного класса. Смешанный объект включает несколько классов и состоит из более мелких неоднородных объектов.
Геометрическая сложность зависит от типов кривых и геометрических конструкций.
Точность представления определяет допуски при проектировании, изысканиях, научных исследованиях.
Точность измерения выражается допусками и погрешностью средств измерения.
Применение трехмерных моделей позволяет строить новые модели и расширяет возможности ГИС как системы принятия решений. С использованием методов трехмерной графики можно по-новому решать задачи проектирования жилой застройки, размещения объектов бытового и хозяйственного назначения в муниципальных округах, создавать новые типы трехмерных условных знаков и т.д.
Примером подобной разработки может служить ГИС Star Informatic для решения задач городского планирования и задач урбанизации, разработанная специалистами из Бельгии и Великобритании (фирма Star).
Выводы
Данные в ГИС обладают своей спецификой и не имеют прямых аналогов в других автоматизированных системах. Они имеют множество форматов (практически каждая ГИС - свой) и разные формы представления.
Информационная основа ГИС содержит типизированные и нетипизированные записи, а также графические данные с двумя основными формами представления - векторной и растровой. Растровые и векторные модели имеют свои преимущества при решении разных задач и дополняют друг друга в системе комплексной обработки данных ГИС. Векторные данные разделяются на три основных типа: точечные, линейные и полигональные. Каждый тип характеризуется своими методами обработки.
Остается нерешенной проблема автоматизированного преобразования растровых моделей в векторные.
Интеграция данных в ГИС позволяет решать задачи проекционных преобразований и объемного представления трехмерных объектов, включая их динамическую визуализацию.