Лекция №11 измерение мощности
Вид материала | Лекция |
- Лекция 3, 169.64kb.
- Лекция №15 Тепловые процессы в имс система параметров теплового режима имс, 87.62kb.
- Планов предприятия, их взаимосвязь, 40.37kb.
- Руководство по применению усилителей мощности, когда используются многокаскадные(многоканальные), 669.66kb.
- Vi. Измерение вредных производственных факторов рабочих мест, 43.78kb.
- Основные производственные показатели, 1686.62kb.
- Постановления Правительства Российской Федерации от 31 августа 2006 г. N 529 "О совершенствовании, 20.18kb.
- «измерение», 44.31kb.
- Российское акционерное общество энергетики и электрификации «еэс россии», 1803.99kb.
- Автоматизированные системы контроля и учета электроэнергии и мощности. Типовая методика, 1169.78kb.
1 2
Лекция №11 ИЗМЕРЕНИЕ МОЩНОСТИ
Общие сведения
К измерению мощности в практической радиотехнике прибегают во всем частотном диапазоне — от постоянного тока до миллиметровых и более коротких длин волн. Измерять уровни мощности приходится в очень широких пределах — от 10-18 до 108 Вт.
В последние годы при измерениях наряду с абсолютными (ватт, милливатт и т.д.) широко используют относительные (логарифмические) единицы мощности (децибелы). Отметим, что относительные единицы измерения имеют ряд существенных преимуществ и применяются для оценки мощности источников радиотехнических сигналов, степени их усиления или ослабления, чувствительности приемных устройств, погрешностей измерений и пр.
Новые возможности в решении задач измерения мощности открыли достижения в области физики, микроэлектроники, и особенно цифровой техники, позволившие автоматизировать измерительную процедуру и проводить ее в интерактивном режиме.
Как физическая величина, электрическая мощность определяется работой, совершаемой источником электромагнитного поля в единицу времени. Размерность электрической мощности записывается следующим образом: джоуль/сек = ватт.
Измерение мощности в различных частотных диапазонах имеет определенные особенности. Измерители электрической мощности промышленной частоты наряду со счетчиками энергии являются основой действующей системы учета потребления электрической энергии в народном хозяйстве. Измерение мощности на постоянном токе, а также в диапазоне звуковых и высоких частот имеет ограниченное значение, поскольку на частотах до нескольких десятков мегагерц часто удобнее измерять напряжения, токи и фазовые сдвиги, а мощность определять расчетным путем. На частотах свыше 300 МГц вследствие волнового характера процессов значения напряжения и токов теряют однозначность и результаты измерений начинают зависеть от места подключения прибора. Вместе с тем поток мощности через любое поперечное сечение линии передачи всегда остается неизменным. По этой причине основным параметром, характеризующим режим работы устройства СВЧ, становится мощность.
В этой лекции пойдет речь об измерении мощности в основном на высоких и сверхвысоких частотах. Краткие сведения об измерении мощности на постоянном токе и токе промышленной частоты приведены постольку, поскольку они необходимы для описания методов и средств измерений на более высоких частотах.
Измерение мощности в электрических цепях является распространенным видом измерения, характеризующим работу электрических устройств. В технике СВЧ в связи с соизмеримостью размеров цепей и длины волны — это единственный способ однозначной оценки интенсивности электромагнитного поля.
В цепях постоянного тока мощность, потребляемая нагрузкой, равна произведению тока и напряжения и ее можно определить косвенным методом с помощью амперметра и вольтметра или прямым — с помощью электродинамического ваттметра.
В цепях переменного синусоидального тока различают активную (среднюю за период) мощность

и реактивную мощность Q= UI sin φ, где U — действующее значение напряжения на нагрузке; I — действующее значение тока, протекающего через нагрузку; φ — фазовый сдвиг между напряжением и током.
Преимущественно измеряется значение активной мощности.
Если нагрузка RH в электрической цепи чисто активная (φ = 0), то мощность переменного тока

Для сигнала произвольной формы, имеющего периодическую структуру, электрическую мощность можно оценить с помощью ряда Фурье:

где U0, I0 — постоянные составляющие; Un, In — средние квадратические значения гармоник напряжения и тока;φ— фазовый сдвиг между гармониками напряжения Un и тока In.
В цепях с током промышленной частоты активная мощность измеряется с помощью электродинамических ваттметров, показания которых соответствуют формуле (1).
Принцип действия электродинамического ваттметра основан на том, что угол поворота α рамки (со стрелкой) электродинамического прибора пропорционален произведению токов, умноженному на косинус угла φ между ними:

где k — постоянный для данного прибора коэффициент.
Пусть требуется измерить активную мощность, потребляемую некоторой нагрузкой ZH, к которой приложено действующее значение напряжения Uн и через нее протекает гармонический ток со средним квадратическим значением Iн и сдвинутый по фазе на угол φ по отношению к напряжению.
С


где k — коэффициент пропорциональности.
Ваттметры электродинамической системы могут применяться для измерения электрической мощности в цепях как постоянного, так и переменного тока, но наиболее широко используют их для измерения мощности промышленной частоты.
Применяя вольтметр и амперметр переменного тока, можно определить значение полной мощности S = UI, которое при чисто активной нагрузке R совпадает с значением активной мощности Р =UI = I2R = U2/R.
В



где τ — длительность импульса; Q — скважность последовательности импульсов.
Практически измеряют среднюю мощность Р и по формуле (2) определяют импульсную РИ. Если форма импульса отлична от прямоугольной (рис.11.2,б), мощность определяют по эквивалентному прямоугольному импульсу той же высоты, длительность которого равна интервалу времени между точками огибающей импульса на уровне половины его высоты.
Иногда представляется необходимым измерить среднюю мощность за период несущей частоты импульсно-модулированного сигнала в точке его максимальной высоты. Такая мощность называется пиковой мощностью и определяется из формулы (2):

где k — отношение максимальной высоты импульса к высоте эквивалентного прямоугольного импульса.
На низкой частоте находят применение ваттметры на интегральных аналоговых перемножителях.
Интегральный перемножитель сигналов реализует передаточную функцию

где kа — масштабный коэффициент, а u1 и u2 — перемножаемые аналоговые напряжения.
Р

При перемножении двух аналоговых напряжений производятся операции:
суммирование: u1 + u2;
вычитание: u1 - u2;
возведение в квадрат: (u1 + u2)2, (u1 - u2)2,
вычитание квадратов: (u1 + u2)2- (u1- u2)2 = 4 u1 u2
деление напряжения на четыре: 4 u1 u2/4 = u1 u2.
Чтобы применить перемножитель сигналов в схеме ваттметра, достаточно в качестве выходного каскада измерителя включить низкочастотный фильтр.
Если напряжения u1 = Umcosωt и u2 = ImRcos(ωt-φ), где R — эталонное сопротивление, то сигнал на выходе: Pвых=kaUmImR.cosωt.cos(ωt-φ). Приняв коэффициент kа = 1, сопротивление R=1 Oм и учитывая формулу произведения двух косинусов, получим:

Выделенная специальным низкочастотным фильтром постоянная составляющая данной мощности будет пропорциональна измеряемой мощности (вторым слагаемым на выходе фильтра можно пренебречь), т.е. Ро= UIcosφ
В перемножителях используют идентичные, со стабильными параметрами нелинейные элементы, имеющие квадратичные характеристики.
Более высокую точность измерения мощности по методу прямого умножения двух сигналов обеспечивает операция интегрирования, которую применяют в прецизионных измерительных преобразователях активной мощности промышленной частоты.
Погрешность измерения мощности колеблется в широких пределах: от 0,1—0,2 % при измерении мощностей на постоянном токе и токе промышленной частоты до 4—10 % и более при измерении мощностей на СВЧ. Это объясняется возможностями применяемых методов и средств измерений в различных частотных диапазонах.
В


При измерении мощности ее значение выражают в ваттах (или его кратных и дольных значениях) или децибел-ваттах (децибел-милливаттах). Последнее значение определяется выражением ±а = 10lg P/P0, где a — число децибел-ватт со знаком плюс, если Р > Р0), и со знаком минус, если Р < Р0; Р — абсолютное значение мощности в ваттах; Р0 — исходный уровень мощности, равный 1 Вт Так, например, ноль децибел-ватт соответствует мощности 1 Вт. Если исходный уровень равен 1 мВт, то 30 дБм соответствуют 1 Вт, а минус 30 дБм соответствуют 1 мкВт. Если за Р0 принят 1 мВт единицу измерения обозначают дБм (децибел относительно милливатта). Относительные единицы мощности удобно использовать при определении уровней мощности в различных точках тракта передачи энергии, содержащего устройства, поглощающие или усиливающие мощность.
При измерении мощности на высоких и сверхвысоких частотах определяющую роль играет согласование полных сопротивлений в тракте передачи энергии. От качества согласования зависит уровень мощности, получаемой от генератора или усилителя, значение отражений в тракте генератор — линия — нагрузка и мощность, поглощаемая нагрузкой. Если нагрузка с полным сопротивлением Zн=Rн+jXн подключена к генератору непосредственно, то, как известно, генератор с внутренним сопротивлением Zг = Rг + jXr отдает в эту нагрузку мощность

где Ur — действующее значение напряжения на выходе генератора.
Наибольшую мощность Рмакс генератор будет отдавать нагрузке при комплексно-сопряженном согласовании их сопротивлений, т. е. при Rг = RH и Хг = —Хн. Эта мощность называется располагаемой мощностью генератора, и ее значение определяется из формулы (3): Рмакс=



где Гн — коэффициент отражения от нагрузки по напряжению.
Если волновое сопротивление линии передачи согласовано с сопротивлением нагрузки (Zн=ρ), то коэффициент отражения равен нулю и к нагрузке поступает максимальная мощность. В общем случае, когда и генератор и нагрузка не согласованы, мощность в последней представляется так:

Следует иметь в виду, что в зависимости от электрической длины линии передачи

Широкий диапазон частот, большие пределы значений мощности и различие допустимых погрешностей вызвали применение значительного числа методов измерений и основанных на них ваттметров.
Мощность на высоких частотах (f < 100 МГц) определяют косвенным методом путем измерения тока или напряжения на соответствующих резисторах с известными сопротивлениями. На частотах до 2 ГГц этот метод применяют в виде «метода вольтметра», на основе которого выпускается ваттметр для измерения поглощаемой мощности. В диапазоне СВЧ электромагнитную энергию преобразуют в другой вид энергии, более удобный для измерения. Наибольшее применение находит преобразование электромагнитной энергии в тепловую, на базе которого разработаны методы: калориметрический, терморезисторный (болометрический и термисторный) и термоэлектрический. Находят применение пондеромоторный метод, основанный на механическом действии электромагнитного поля, и метод, основанный на эффекте Холла в полупроводнике.
Л

Измерение поглощаемой мощности
М

П




Выбор измерительного прибора — амперметра или вольтметра — определяется диапазоном частот, значением измеряемой мощности и сопротивления нагрузки, допустимой погрешностью измерения. Так, например, на частотах до 100 МГц при заданной погрешности измерения до ±5 % можно применить термоэлектрический амперметр и электронный вольтметр класса точности 1,0 и 2,5 соответственно. Таким образом измеряют значения мощностей от единиц ватт до сотен киловатт.
Н

Калориметрический метод. Этот метод относится к наиболее точным измерениям высокочастотной мощности больших и средних значений практически на любой частоте. Он основан на преобразовании электромагнит' ной энергии в тепловую. Калориметрический ваттметр состоит из приемного преобразователя, в котором расположена нагрузка, поглощающая электромагнитную энергию. При этом выделяется теплота, нагревающая некоторое рабочее тело. С помощью измерительного узла измеряется температура рабочего тела, и по ее значению определяется значение мощности. Ваттметры выполняются с твердым или, чаще, с жидким рабочим телом, работают в адиабатном режиме (без теплоотдачи во внешнюю среду) или при постоянной температуре рабочего тела.
Н


При постоянных удельной теплоемкости и скорости протекания жидкости v/t измеряемая мощность прямо пропорциональна разности температур: Р=a∆T. Для измерения ∆T применяют батареи термопар, термоЭДС которых определяется с помощью магнитоэлектрического милливольтметра. Если термобатареи включить последовательно и встречно, то показание милливольтметра будет пропорционально ∆T и его шкалу можно градуировать в единицах мощности — ваттах.
Погрешность измерения мощности калориметрическим методом возникает вследствие изменения удельной теплоемкости жидкости при ее значительном нагревании, дополнительного нагрева жидкости за счет трения, изменения скорости и характера движения жидкости, потерь теплоты на излучение. Для уменьшения погрешности используют метод сравнения, в котором тепловой эффект, вызванный СВЧ-энергией, сравнивается с тепловым эффектом, вызванным энергией постоянного тока или тока низкой частоты.
Д


Метод терморезистора. Этот метод основан на измерении сопротивления болометра или термистора, изменяющегося под влиянием мощности СВЧ, поэтому его часто называют болометрическим или термисторным методом.
Болометр представляет собой вольфрамовую или платиновую нить, заключенную в стеклянный баллончик, заполненный инертным газом. Поперечное сечение нити 3—10 мкм, а длина l<0,1λ. К нити припаяны выводы для включения в измерительную схему. Допустимая мощность рассеивания для нитевидных болометров находится в пределах от 50 мВт до 2 Вт; чувствительность от 1,5 до 8 Ом/мВт; рабочая частота ниже 1 ГГц; сопротивление нити в холодном состоянии 6—120 Ом. На частотах выше 1 ГГц используются пленочные болометры. Тонкая платиновая или палладиевая пленка наносится в вакууме на подложку из стекла или слюды, соизмеримую с сечением волновода. Для включения в измерительную цепь края подложки покрываются серебром. Пленочные болометры хорошо согласуются с волноводным трактом, их конструкция удобна для включения, и, что очень ценно, они могут применяться до частот миллиметрового диапазона волн. Чувствительность 3—3,5 Ом/мВт при работе на частотах ниже 10 ГГц; на более высоких частотах она снижается. Рабочее сопротивление несколько сот Oм. Температурный коэффициент болометров положительный.
Термистор представляет собой бусинку (или диск) спрессованной смеси окиси марганца, никеля и кобальта, покрытую тонким слоем стекла. Бусинка заключена в стеклянный баллончик между более жесткими выводами, чем впрессованные в бусинку платиновые проволочки. Материал, из которого изготавливают термисторы, является полупроводником, поэтому их температурный коэффициент отрицательный. Чувствительность термисторов много выше чувствительности болометров — до 100 Ом/мВт; они широко применяются для измерения малых и очень малых мощностей на частотах до 78 ГГц. Сопротивление термисторов в холодном состоянии колеблется от сотен Oм до сотен кOм. Рабочая точка устанавливается предварительным подогревом постоянным током или током низкой частоты и выбирается для согласования с волноводным трактом в несколько сот Oм.
Основными характеристиками болометров и термисторов являются зависимость их сопротивления и чувствительности от поглощаемой мощности и максимальная допустимая мощность рассеивания.
Терморезисторный ваттметр состоит из приемного преобразователя, в котором размещены болометр или термистор и элементы согласования; измерительного узла в виде моста постоянного тока для измерения сопротивления терморезистора; отсчетного устройства с цифровой или стрелочной индикацией; стабилизированного блока питания.
П

В

Измерение сопротивления терморезистора (а следовательно, и мощности) производится с помощью моста постоянного тока. В одно плечо моста включается болометр или термистор, а в остальные — постоянные резисторы, сопротивления которых равны сопротивлению терморезистора в рабочей точке. Такой равноплечий мост обладает наибольшей чувствительностью.
И

Ваттметр с неуравновешенным мостом позволяет непрерывно и непосредственно измерять мощность; схема его проста и надежна в работе. Однако он имеет ряд недостатков: необходимость предварительной градуировки и ее периодической проверки; значительную погрешность, превышающую 10 %. Причины погрешности заключаются в рассогласовании тракта СВЧ с сопротивлением терморезистора, так как последнее изменяется в зависимости от измеряемой мощности, температуры окружающей среды и нестабильности напряжения источника питания.
В


Затем подается СВЧ-сигнал, термистор дополнительно нагревается, его сопротивление уменьшается и мост выходит из равновесия. Увеличивая сопротивление Rl т. е. уменьшая постоянный ток через термистор, мост вторично приводят в равновесие, которое наступит при значении постоянного тока I2. Теперь мощность постоянного тока, рассеиваемая на термисторе, согласно формуле (4),

Очевидно, что уменьшение мощности постоянного тока равно приложенной сверхвысокочастотной мощности Р~, т. е.

Измерение мощности с помощью ваттметра с уравновешенным мостом является косвенным, так как требует вычислений. Преимущество этого ваттметра перед ваттметром с неуравновешенным мостом состоит в том, что сопротивление терморезистора остается неизменным и согласование не нарушается. Недостатком является необходимость двух операций уравновешивания моста в процессе одного измерения и выполнение вычислений.
Прямопоказываюшдй ваттметр с уравновешенным мостом, в котором измеряется разность токов ∆I=I1—I2, не имеет этих недостатков. Подставим в формулу (6) значение I2=I1-∆I. После элементарных преобразований получаем

Е

На рис. 11.12 приведена упрощенная схема прямопоказывающего ваттметра с уравновешенным мостом. Равноплечий мост питается от источника постоянного напряжения ИПН через стабилизатор тока СТ. Перед измерением мост уравновешивают с помощью переменного тока, получаемого от генератора низкой частоты Г. Затем на вход приемного преобразователя ППр подается измеряемая мощность, мост выходит из равновесия и на диагонали моста 1—2 появляется напряжение. Это напряжение после усиления в УПТ подается на базу регулирующего транзистора Т, включенного параллельно второй диагонали моста, и вызывает в транзисторе увеличение тока ∆I. Так как значение тока I1 измениться не может, то соответственно уменьшается ток через термистор в приемном преобразователе и мост уравновешивается. Приращение тока транзистора (уменьшение тока термистора) фиксируется на шкале миллиамперметра, градуированной в единицах мощности.
Промышленность выпускает ваттметры поглощаемой мощности со сменными приемными преобразователями и мостовыми измерительными узлами с ручной и автоматической установкой состояния равновесия. Эти ваттметры перекрывают весь диапазон частот, используемый в настоящее время; значение измеряемой мощности составляет от единиц микроватт до единиц ватт. Эти пределы легко расширить с помощью внешних аттенюаторов или направленных ответвителей. Класс точности выпускаемых ваттметров связан с КСВ входной цепи приемного преобразователя и в соответствии с ГОСТ 13605 соотношения их следующие:
-
Класс точности
1,0 1,5
2,5
4,0
6,0
10,0
15,0 25,0
КСВ, не более
1,1
1,2
1,3
1,4
1,5
1,7
Т

К достоинствам термоэлектрического метода относятся: широкий диапазон частот; малое время измерения; малая зависимость показаний от температуры окружающей среды; широкие пределы измеряемой мощности, которые можно расширить применением внешних аттенюаторов и направленных ответвителей на входе преобразователя и высокочувствительных усилителей постоянного тока на выходе.
Термоэлектрический ваттметр со стрелочным индикатором легко превратить в ваттметр с цифровым отсчетом. Для этого вместо магнитоэлектрического измерителя нужно включить цифровой микровольтметр постоянного тока.
С
