Журавлев С. Д., Жуков Р. А. Математическая модель эффективного использования земельных ресурсов. // Проблемы информатики в образовании, управлении, экономике и технике: Сб
Вид материала | Документы |
СодержаниеZhuravlev S.D., Zhukov R.A. The mathematical model of effective use of land resources. |
- Об использовании Нобелевских лекций в информационных технологиях. // Проблемы информатики, 110.52kb.
- Поддубный А. П., Юрков Н. К., Якимов А. Н. Фрактальный подход к сжатию информации., 47.01kb.
- Прошина Р. Д., Слесарев Ю. Н. Методы построения математических моделей в пространстве, 34.51kb.
- Прошина Р. Д., Слесарев Ю. Н. Математическое моделирование асинхронного электропривода, 40.5kb.
- Дрождин В. В., Масленников А. А., Сергеев А. С. Использование протоколов запросов для, 63.12kb.
- Титов Д. В., Кобак В. Г. Анализ подходов к улучшению результатов работы генетического, 82.51kb.
- Демидова Л. А., Коротаев А. Н. Генетический алгоритм настройки параметров системы нечеткого, 38.47kb.
- Кацюба О. А., Тимонин Д. В. Нахождение параметров нелинейных класса Гаммерштейна динамических, 21.38kb.
- Герасимов А. Ф., Федотов Н. Г. Опотоковом методе анализа движений денежных средств, 28.85kb.
- Масленников А. А. , Петрухина, 20.27kb.
Журавлев С.Д., Жуков Р.А. Математическая модель эффективного использования земельных ресурсов. // Проблемы информатики в образовании, управлении, экономике и технике: Сб. статей XI Междунар. научно-техн. конф. – Пенза: ПДЗ, 2011. – С. 44 47.
МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ЭФФЕКТИВНОГО ИСПОЛЬЗОВАНИЯ ЗЕМЕЛЬНЫХ РЕСУРСОВ
С.Д. Журавлев, Р.А. Жуков
Тульский филиал Российской академии народного хозяйства
и государственной службы при Президенте РФ,
г. Тула, Россия, ZhuravlSD@yandex.ru
Тульский институт экономики и информатики,
г. Тула, Россия, pluszh@mail.ru
Представлена математическая модель эффективного использования земельных ресурсов, разработанная на основе корреляционно-регрессионного и факторного анализа.
Zhuravlev S.D., Zhukov R.A. The mathematical model of effective use of land resources. The mathematical model of an effective use of the land resources, constructed on the basis correlation-regressive and the factorial analysis is represented.
Рассмотрим два множества
![](images/381622-nomer-3265a558.gif)
![](images/381622-nomer-4556ac7b.gif)
![](images/381622-nomer-3c193265.gif)
![](images/381622-nomer-3b3bb003.gif)
![](images/381622-nomer-m3204db1d.gif)
![](images/381622-nomer-512d602f.gif)
![](images/381622-nomer-m6b2464b8.gif)
Используя традиционную форму записи, выражение (1) можно представить как
![](images/381622-nomer-618e0071.gif)
где
![](images/381622-nomer-3c193265.gif)
![](images/381622-nomer-3b3bb003.gif)
В линейном случае уравнение (2) можно представить в матричной форме:
![](images/381622-nomer-m3cd86ee4.gif)
где
![](images/381622-nomer-43e6740d.gif)
Здесь
![](images/381622-nomer-m93e79b6.gif)
Рассмотрим выражение, аналогичное (2), и представим каждый из компонентов вектора
![](images/381622-nomer-m4bf0e5bd.gif)
![](images/381622-nomer-27c5b396.gif)
![](images/381622-nomer-m1299b460.gif)
![](images/381622-nomer-m15563181.gif)
Представим данное соотношение в линейном виде:
![](images/381622-nomer-m627a6f7e.gif)
где
![](images/381622-nomer-m1299b460.gif)
![](images/381622-nomer-m123ada6b.gif)
Для отыскания параметров в (5) воспользуемся методом наименьших квадратов:
![](images/381622-nomer-672a2de.gif)
где
![](images/381622-nomer-m5aa7d2f4.gif)
![](images/381622-nomer-m5d648e59.gif)
![](images/381622-nomer-2908afff.gif)
Для анализа силы воздействия факторных признаков на результат с целью сравнения влияния на зависимую переменную объясняющих переменных, когда они представлены в разных единицах измерения, возникает необходимость использования безразмерных величин. Тогда в уравнении (5) вместо
![](images/381622-nomer-m47bd5cf4.gif)
![](images/381622-nomer-837628d.gif)
![](images/381622-nomer-m1742a1ec.gif)
где
![](images/381622-nomer-7c79423e.gif)
соответствующие среднеквадратические отклонения (для количества наблюдений меньше 30 в знаменателе следует использовать выражение (n-1), а
![](images/381622-nomer-m7df67a44.gif)
Стандартизованный коэффициент регрессии
![](images/381622-nomer-m8a3ac44.gif)
![](images/381622-nomer-4527de5a.gif)
![](images/381622-nomer-m1299b460.gif)
![](images/381622-nomer-f4e94d7.gif)
![](images/381622-nomer-m7cfafed2.gif)
Применяя преобразования (7) – (9), суть которых в приведении показателя к стандартизованному виду, приходим к следующему виду регрессионной модели:
![](images/381622-nomer-40bc6d24.gif)
Обобщая представленную методику на случай m результативных признаков, имеем:
![](images/381622-nomer-m14563a62.gif)
или
![](images/381622-nomer-m37c0c4c4.gif)
Здесь l – число наблюдений (количество взятых в рассмотрение единиц совокупности): i=1..m – индекс результативного показателя. Для отыскания минимума возьмем частные производные по неизвестным параметрам и приравняем их к нулю:
![](images/381622-nomer-5e997902.gif)
Тогда полученная система линейных уравнений примет вид:
![](images/381622-nomer-648f9e11.gif)
Из (14) однозначно находятся параметры
![](images/381622-nomer-3ccc88b.gif)
Для решения системы алгебраических уравнений (14) можно воспользоваться одним из известных методов, например, методом Крамера, методом Гаусса, Жордано и др. Переходя к стандартизованному виду и используя соотношения (7)-(9), имеем набор моделей, каждая из которых характеризует выбранный результативный признак:
![](images/381622-nomer-m5cc4d2c4.gif)
Модели, представленные в форме (15) (в матричном виде используется соотношение (3), позволяют вычислить средние значения результативных показателей по исследуемому объекту: муниципальному образованию, региону, федеральному округу и т.д. В этом аспекте будем считать их «нормативными» и использовать для последующего анализа хозяйственной деятельности объектов на обособленной территории, в частности, для анализа эффективности использования земельных ресурсов.
Представляется, что разработанный подход является универсальным для анализа показателей, имеющих различную природу, и его можно применять для изучения процессов деятельности подсистем экологического, социального и экономического характера.
Следует отметить, что в моделях должны фигурировать существенные факторы, оказывающие наибольшее влияние на результативный признак, что определяется на основе факторного анализа. Это является необходимым (но недостаточным) условием для формирования оптимальных управляющих воздействий, направленных на эффективное использование земельных ресурсов.