Концепции Современного Естествознания
Вид материала | Документы |
Содержание39. Элементарные частицы – |
- В. М. Найдыш Концепции современного естествознания, 8133.34kb.
- Учебно-методический комплекс дисциплины концепции современного естествознания Специальность, 187.08kb.
- Концепции Современного Естествознания, 274.86kb.
- Программа курса «Концепции современного естествознания», 168.05kb.
- Программа дисциплины Концепции современного естествознания Специальность/направление, 456.85kb.
- Г. И. Рузавин Концепции современного естествознания Рекомендовано Министерством общего, 3030.69kb.
- Введение Наука "Концепции современного естествознания", 48.81kb.
- Высшее профессиональное образование т. Я. Дубнищева концепции современного естествознания, 9919.17kb.
- Программа дисциплины концепции современного естествознания для студентов 3 курса очной, 191.37kb.
- Программа дисциплины «концепции современного естествознания» «050706 Педагогика и психология», 169.4kb.
37. Фундаментальные взаимодействия – четыре физических взаимодействия, к которым сводится всё многообразие процессов макромира, микромира и мегамира. 1). Сильное ядерное, переносчик обменный пи-мезон (пион), масштаб действия примерно – 10– 15 м, связывает нуклоны в атомном ядре. 2). Электромагнитное, переносчик фотон, дальнодействующее выражается законом Кулона. 3). Слабое ядерное, переносчик промежуточный векторный бозон, средний радиус действия примерно – 10– 17 м, приводит к бета-распаду ядер. 4). Гравитационное, переносчик гравитон, дальнодействующее, выражается законом всемирного тяготения Ньютона. Особенно следует остановиться на электромагнитном взаимодействии.
Электромагнитное взаимодействие – одно из четырех фундаментальных взаимодействий, характеризуемое участием электромагнитного поля (см.) переносчиком взаимодействия в котором является его квант – фотон. В процессе взаимодействия частиц и поля фотон либо излучается, либо поглощается, обеспечивая притяжение разноименных электрических зарядов и отталкивание одноименных. Сила взаимодействия двух электрически заряженных тел выражается законом Кулона (1785 год), полностью аналогичным закону гравитационного взаимодействия, с той лишь разницей, что гравитация проявляется только как притяжение. Исключительную важность для объяснения устойчивости мира как в атомном, так и в космическом масштабах представляет тот факт, что интенсивность электромагнитного взаимодействия примерно в 1040 раз превышает гравитационное.
Согласно классической электродинамике, магнитные силы возникают только в результате движения электрических зарядов, и хотя из некоторых современных теорий следует возможность наличия в природе, наподобие электрических, также и свободных магнитных зарядов (т.н. магнитный монополь, предсказанный П. Дираком в 1931 году), экспериментально они пока не обнаружены. Электромагнитное взаимодействие обеспечивает устойчивость всех атомных и молекулярных структур, к ним также сводится большинство сил, наблюдаемых в макромире, таких, как силы трения, упругости, поверхностного натяжения и т.д. Свойства различных агрегатных состояний вещества, химические превращения, оптические явления, рентгеновское излучение, потоки тепла, света и радиоволн – всё это результат проявления электромагнитных сил. Таким образом, электромагнитное взаимодействие обусловливает большой класс физических и химических и биологических явлений в окружающем мире.
Процессы, в которых участвуют относительно слабые и медленно меняющиеся электромагнитные поля, описываются законами классической электродинамики, сводящейся к четырем фундаментальным уравнениям, введенным в науку в 1865 году выдающимся английским физиком Дж.К. Максвеллом. Он математически выразил и обобщил результаты всех экспериментов по электричеству и магнетизму, проведенных к тому времени такими выдающимися физиками, как Фарадей, Ампер, Кулон и др. Это был революционный шаг, открывший пути новым представлениям о природе взаимодействий на основании понятия поля, пронизанного силовыми линиями, и ознаменовавший начало кризиса ньютоновской механической парадигмы.
Из уравнений Максвелла, в частности, следовало, что физически возможен процесс распространения в пространстве электромагнитных волн в виде колебания электрического и магнитного полей со скоростью, равной скорости света, что навело Максвелла на мысль о электромагнитной природе света. Известный немецкий физик Генрих Герц, который привел уравнения Максвелла к современному симметричному виду (1890 г.), а также экспериментально доказал существование электромагнитных волн, распространяющихся со скоростью света (1888 г.), писал: «Нельзя изучать эту удивительную теорию, не испытывая по временам такого чувства, будто математические формулы живут собственной жизнью и обладают собственным разумом, - кажется, что эти формулы умнее нас, умнее даже самого автора, как будто они дают нам больше, чем в своё время было в них заложено». Можно определенно утверждать, что система уравнений Максвелла – один из ярчайших примеров огромных смыслопорождающих возможностей математического текста.
Электродинамику Максвелла-Герца, связавшую воедино электрические и магнитные силы, принято считать первым этапом на пути создания универсальной теории объединения всех фундаментальных сил природы – единой теории поля. Изучение электромагнитных явлений на уровне микромира привело к появлению квантовой электродинамики (Р. Фейнман, Ю. Швингер, С. Томонага, - 1948-1949 гг.) – одной из самых точных квантовых теорий, которая на языке т.н. фейнмановских диаграмм описывает процессы взаимодействия фотонов с электронами, аннигиляцию и рождение электрон-позитронных пар, сдвиг энергетических уровней в электронных оболочках атома и многие другие явления микромира. (См. также: Квантовая механика).
Интенсивность взаимодействий характеризуют т.н. Фундаментальные константы – основные физические параметры, которые «отвечают» за все процессы, происходящие в природе на разных уровнях реальности (таких, как микромир, макромир, мегамир), и известные значения которых, в свете современных теорий, принципиальны для обеспечения устойчивости Вселенной и её долговременного развития.
К основным фундаментальным константам относятся:
1) скорость света с=3*108 м/сек,
2) гравитационная постоянная G=6,627*10 –11 м3 кг-1сек-2,
3) постоянная Планка h=6,62377*10 –34 кг м2 сек-2,
4) масса протона mp=1,6224*10 –27 кг,
5) масса нейтрона mn=1,6749*10 –27 кг,
6) масса электрона me=9,106*10 –31 кг,
7) масса альфа-частицы m=6,6444*10 –27 кг,
8) заряд электрона qe=1,602*10 –19 Кулона,
9) постоянная тонкой структуры =2qe2c-1h-1=1/137, характеризующая электромагнитное взаимодействие элементарных частиц.
10) Сюда относится также и соотношение между интенсивностями четырех фундаментальных взаимодействий – сильное / электромагнитное / слабое / гравитационное = 1 / 0,01 / 10-5 / 10-39, некоторые важные резонансные характеристики термоядерных реакций, а также крупномасштабная геометрическая размерность пространства Вселенной, равная 3 (определяемая в прямоугольной декартовой системе координат через три независимые переменные {x,y,z} и условно обозначаемая терминами длина, ширина и высота).
В настоящее время серией модельных экспериментов показано, что значения фундаментальных констант могут быть только такими, какими они представлены в той или иной системе физических единиц, - в противном случае (если бы они даже незначительно отличались от известных величин) структура Вселенной на всех уровнях её организации была бы совершенно иной, причем такой мир был бы несовместим с возможностью существования человека. Никакая научная теория не может объяснить причину, по которой в природе выполняется столь точная «подстроенность» этих величин. Значения этих констант также невозможно получить теоретически, исходя из некоторых более общих представлений, - их определяют экспериментально, причем неизвестно, являются ли эти числа истинными константами, или они медленно изменяются по мере эволюции Вселенной.
Подчеркивая исключительно важное значение понятия фундаментальных констант как для науки в объяснении существующей структуры Вселенной, так и для философии, исследующей т.н. проблему наблюдения (см.), играющую принципиальную роль в новой физике, один из создателей квантовой механики Макс Планк писал: «Эти малые величины, так называемые универсальные константы, в некотором смысле, образуют те неизменные строительные кирпичики, из которых строится здание теоретической физики. В чем собственно состоит значение этих констант? Являются они в конечном счете изобретением человеческого гения или же они обладают также и реальным смыслом, не зависящим от человеческого интеллекта? Первое утверждают сторонники позитивизма, во всяком случае, его крайних форм. По их мнению, у физики нет других оснований, кроме измерений, на которых она зиждется, и физическая гипотеза имеет смысл лишь постольку, поскольку она подтверждается измерениями. Однако, поскольку каждое измерение предполагает присутствие наблюдателя, то с точки зрения позитивизма содержание физического закона совершенно невозможно отделить от наблюдателя, и этот закон теряет свой смысл, если только попытаться представить себе, что наблюдателя нет, а за ним и его измерениями стоит нечто иное, реально существующее и не зависящее от самого измерения. … Безусловно, последовательный позитивист и в наши дни [1937 год, - А.К.] мог бы назвать универсальные константы только изобретением, которое оказалось чрезвычайно полезным, поскольку оно делает возможным точное и полное описание результатов самых различных измерений. Однако вряд ли найдется настоящий физик, который всерьез отнесется к подобному утверждению. Универсальные константы не были придуманы по соображениям целесообразности, - физика вынуждена их принять как неизбежное следствие совпадения результатов всех специальных измерений, и – что самое существенное – мы заранее знаем, что и все будущие измерения приведут к тем же константам». Показательно, что идеи позитивистов, относительно «привязанности» фундаментальных констант и законов природы к наблюдателю, а следовательно, признание их (в некотором смысле) не объективным результатом реальных проявлений принципов мироустройства, открывающихся в наблюдениях, а искусственными конструкциями, при помощи которых происходит рационализация непостижимой природы в наших теориях, приобрели совершенно новое и отнюдь не позитивистское звучание в связи с последними достижениями квантовой механики и космологии, некоторые повороты в трактовке которых привели к религиозно-сциентистским представлениям о т.н. Универсальном наблюдателе и к антропному принципу. (См. Универсальный эволюционизм).
Дискуссии вокруг роли и места фундаментальных констант в космологии, взаимообусловленности их с «человеческим фактором», анализ диапазона возможных значений этих параметров, совместимых с устойчивостью Вселенной способностью её породить достаточно сложные структуры, а также вопрос о случайности или не случайности реализации именно таких, а не каких-либо других значений (совокупность которых в процессе Большого взрыва (см.) привела бы к совершенно иным закономерностям эволюции Вселенной), вышли в настоящее время за пределы собственно естествознания и приобрели масштаб философско-метафизических построений, известных как антропный принцип. «Законы науки в том виде, в котором мы их знаем сейчас, - пишет в связи с антропным принципом выдающийся физик современности Стивен Хокинг, - содержат много фундаментальных величин, таких, как электрический заряд электрона и отношение массы протона к массе электрона. Мы не умеем, по крайней мере сейчас, теоретически предсказывать значения этих величин – они находятся только из эксперимента. Может быть придет день, когда откроем полную единую теорию, с помощью которой все эти величины будут вычислены, но может оказаться, что некоторые из них, а то и все, изменяются при переходе от вселенной к вселенной или в пределах одной вселенной. Удивительно, что значения этих величин были, по-видимому, очень точно подобраны, чтобы обеспечит развитие жизни».
Существуют вполне научные доводы в пользу того, что в принципе возможен и другой набор фундаментальных констант (и даже не единственный), который будет соответствовать другому типу вселенной (или вселенных), однако в свете современных достижений многих дисциплин естествознания (от физики элементарных частиц до биологии), складывается убеждение, что высокоорганизованная разумная жизнь присуща только вселенным нашего типа, а таковых вряд ли может быть больше, чем одна. «Величины, о которых мы говорим, - указывает Хокинг, - имеют сравнительно немного областей значений, при которых возможно развитие какой бы то ни было разумной жизни. Большая же часть значений отвечает вселенным, в которых, как бы ни были они прекрасны, нет никого, кто мог бы ими восхищаться. Это можно воспринимать либо как свидетельство Божественного провидения в сотворении Вселенной и выборе законов науки, либо как подтверждение сильного антропного принципа». В этой связи можно только добавить, что два этих тезиса не противоречат друг другу, а наоборот, - взаимно друг друга дополняют, делая картину мира более цельной.
В связи с антропным принципом существует интригующая проблема необъяснимых современными теориями совпадений больших чисел (порядка 1040), характеризующих соотношения между некоторыми фундаментальными константами. Так, например, отношение интенсивности электромагнитного и гравитационного взаимодействий оценивается как 1040, такого же порядка отношение между радиусом видимой части Вселенной (космологический горизонт событий RВс6*1028 см) и средним радиусом электрона rэ10–13 см. Отношение плотности вещества электрона э2*1011 г/см3 к критической плотности вещества Вселенной кр10– 29 г/см3 также составляет 1040. Известно, что из некоторых вариантов Теории великого объединения следует, что протон неустойчив, но его период полураспада (или средняя продолжительность жизни) имеет порядок 1032 – 1034 лет. Эти оценки экспериментом не подтвердились и теперь воспринимаются как недостаточно большие. Если в совпадении космологических параметров и параметров микромира есть какой-либо глубокий смысл, то с учетом среднего времени жизни нейтрона (15 мин) и коэффициента 1040 этот предел для протона можно оценить как 1036 лет.
38. Экосистема. Особый тип системы являет собой экосистема. Это сложная диссипативная самоорганизующаяся и информационно саморазвивающаяся, термодинамически открытая и структурно организованная совокупность биотических компонентов и абиотических источников вещества и энергии, (занимающая определенное пространство и существующая на определенном отрезке времени), единство и функциональная связь которых обеспечивает в пределах характерной для неё пространственно-временной области превышение потоков вещества, энергии и информации, обусловленное внутренними алгоритмами самоорганизации и упорядочения, над спонтанными термодинамическими процессами диссипации (т.е. рассеяния), которые постепенно приводят систему к тепловому хаосу.
Вся биосфера может быть представлена как совокупность многих экосистем (самого различного масштаба), находящихся в постоянном взаимодействии. Структура экосистемы любого масштаба – это не просто иерархически организованная многоуровневая система типа «особи - популяции - сообщества - биоценоз». Это система, характеризуемая как кибернетическим, так и синергетическим типами поведения, включающая в себя живые и неживые компоненты, хаотические энергетические потоки и упорядоченные потоки вещества и энергии, которые можно рассматривать как информационные. Экосистему кратко можно охарактеризовать как сложную диссипативную систему косного вещества, растений и животных, связанных нелинейными метаболическими физико-химико-биологическими процессами, протекающими в пределах некоторой пространственно-временной единицы любого ранга, пронизанную многочисленными положительными и отрицательными обратными связями, которые обеспечивают её целостность и эволюционность.
Как и любые сложные самоорганизующиеся системы, экосистемы подчиняются общим законам, проявляющимся в процессе эволюции неравновесных открытых систем стохастического типа. Их развитие характеризуется более или менее длительными периодами квазиравновесных состояний, определяемых набором соответствующих параметров порядка, оптимально сформированными трофическими цепочками и другими характеристиками, обеспечивающими устойчивость, но при некоторых неблагоприятных условиях (например, воздействии техногенного характера и т.д.) траектория развития экосистемы может выйти в область, всё более удаляющуюся от равновесия.
При недостаточной буферности и исчерпании компенсационных возможностей той или иной экосистемы это чревато переходами к новым состояниям в результате бифуркаций, которые в этих случаях имеют вид экологических стрессов и даже катастроф. Экосистемы как таковые при этом не исчезают, а перестраиваются и приобретают новые черты, компоненты и закономерности, причем каждый такой переход необратим во времени. С точки зрения теории эволюции сложных неравновесных стохастических систем точно воспроизвести некогда существовавшую, но затем по каким-либо причинам разрушившуюся экосистему невозможно, равно как и воспроизвести полностью исчезнувший вид любого организма.
Эволюция биосферы в этом смысле представляет собой обусловленную естественными причинами, (как общекосмическими, так и циклическими явлениями «местного масштаба», а также случайными причинами) неизбежную и закономерную череду экологических бифуркаций и необратимых перестроек, в результате чего и осуществляется процесс саморазвития биосферы. В ряду этих явлений локальное и глобальное экологическое воздействие «разумной» человеческой деятельности на биосферу можно, в зависимости от общей точки зрения, рассматривать и как случайное (ведь разум мог и не возникнуть), и как закономерное явление, обусловленное, согласно антропному принципу, универсальными и фундаментальными алгоритмами развития Вселенной.
С точки зрения универсальных законов сохранения глобальная экосистема, по словам известного эколога Б. Коммонера, представляет собой единое целое, в рамках которого ничего нельзя ни приобрести, ни потерять без того, чтобы это не повлияло на всю систему в целом. Биосферная экосистема не может являться объектом всеобщего улучшения, и всё, что из неё было извлечено человеческим трудом, взято как бы взаймы и должно быть со временем возвращено. - «Платежа по этому векселю нельзя избежать, он может быть только отсрочен». (См. также: Система, Трофические цепи).
39. Элементарные частицы – субатомные объекты, представляющие собой специфическую форму структурной организации вещества в микромире. Могут быть стабильными: электрон, протон, нейтрино, фотон и нестабильными: нейтрон, различные мезоны и гипероны, а также представлять класс особенно короткоживущих, (порядка 10-24 сек.), называемых резонансными. Лептоны составляют класс легких частиц, мезоны – это промежуточные по массе между барионами (т.е. тяжелыми или, правильнее, массивными частицами) и лептонами, а гипероны – это «сверхмассивные» частицы. В настоящее время с помощью ускорителей обнаружено очень большое количество элементарных частиц (несколько сотен), представляющих класс адронов (т.е. сильно взаимодействующих), среди которых только барионы – протон и нейтрон широко распространены и составляют основу строения мира. Все остальные объекты микромира короткоживущи и практически мгновенно распадаются за счет слабого или сильного взаимодействия. В действительности (кроме лептонов – фотона и нейтрино и м.б. электрона) все эти объекты элементарными не являются, а имеют сложную внутреннюю структуру.
Согласно современной теории элементарных частиц, все частицы (кроме лептонов) можно «построить» посредством известной комбинации «истинно элементарных» частиц – т.н. кварков (см.). Следует заметить, что введенное в физику микромира название лептоны (легкие), соответствующее подразделению объектов по массе, относительно более тяжелых протона и нейтрона (барионов), не отражает современное положение вещей – так, например, «тау»-частица, относящаяся по всем признакам к лептонам, имеет массу, превышающую массу типичных барионов и даже гиперонов. Все элементарные частицы (кроме фотона) имеют соответствующие античастицы, фотон является сам себе античастицей. Поведение элементарных частиц, их взаимодействие с полями и процессы их взаимопревращений достаточно хорошо описываются законами квантовой механики. Все, представленные в таблице частицы, согласно принципу симметрии, имеют соответствующие античастицы.
Таблица некоторых основных элементарных частиц:
Название масса (э.м.) заряд время жизни (сек)
А). Лептоны:
Электрон 1 -1 стабилен
Мюон 206,7 -1 2,2*10-6
Тау-лептон 3536,0 -1 10-12
Электронное нейтрино 0 0 стабильно
Мюонное нейтрино 0 0 стабильно
Тау-нейтрино 0 0 стабильно
Б). Мезоны – (пионы и каоны):
Пи-мезон (заряж.) 273,2 -1 2.56*10-8
Пи-мезон (нейтр.) 260 0 4*10-16
Ка-мезон (заряж.) 966,5 -1 1,22*10-8
Ка-мезон (нейтр.) 966 0 10-10
В). Гипероны:
Лямбда-ноль 2182 0 2,63*10-10
Сигма-плюс 2333 +1 0,8*10-10
Сигма-минус 2348 -1 1,48*10-10
Сигма-ноль 2339 0 6,0*10-20
Кси-ноль 2220 0 2,9*10-10
Кси-минус 2592 -1 1,65*10-10
Омега-минус 3280 -1 1,1*10-10
Одной из самых фундаментальных характеристик элементарных частиц является спин. Спин (от англ. вращаться) – это собственный механический момент количества движения (импульса) элементарных частиц или атомных ядер, имеющий квантово-механическую природу и не связанный с движением частицы как целого. Спин имеет векторный характер (т.е. характеризуется величиной и направлением) и может служить для ориентации частицы в данной системе координат. Спиновое квантовое число измеряется в единицах постоянной Планка и может иметь целое, полуцелое и нулевое значение. В соответствии с этим по статистическим закономерностям поведения ансамбля частиц их относят к фермионам или бозонам. Представление о спине возникло на заре развития квантовой механики и связано с классической аналогией, согласно которой частица (в виде шарика) вращается вокруг своей оси (как волчок), что и приводит к появлению вектора момента импульса. По той же аналогии вводится другой квантовый параметр, характеризующий движение электрона вокруг атомного ядра по соответствующим орбитам – т.н. орбитальный момент количества движения. На самом деле и спин частиц, и орбитальный момент количества движения электрона являются чисто квантовыми понятиями, имеющими очень отдаленное сходство с их прототипами из мира классической механики.
Концепция спина была введена в физику элементарных частиц в 1925 году американскими физиками Дж. Уленбеком и С. Гаудсмитом, исходившими из экспериментальных данных по магнитным свойствам отдельных электронов. Однако здесь выявился квантовомеханический парадокс, заключающийся в аномальной величине собственного магнитного момента электрона, который оказался в два раза больше, чем следует из классической электродинамики в модели вращающегося вокруг своей оси электрически заряженного шарика.
Из ряда других экспериментов со спином электрона при вращении его в магнитном поле следует, что электрону свойственна особая форма вращательной симметрии, состоящая в том, что для возвращения электрона в исходное состояние необходимо совершить полный поворот не на 360 градусов, как в макромире, а на 720, т.е. по нашим понятиям совершить не один, а два полных оборота. Интересно то, что при, условно говоря, движении электрона по атомным орбитам, которое характеризуется орбитальным механическим моментом количества движения, связанная с этим «вращением» величина магнитного момента никаких аномалий не проявляет.
Это свидетельствует о том, что такие особенности пространственной метрики микромира, как особого уровня реальности, которые в современной физике принято считать его фундаментальными свойствами, недоступны классическому сознанию и требуют для описания и интерпретации использования строгого математического языка квантовомеханического формализма. Любые попытки наглядного толкования этих и других необычных свойств мира элементарных частиц в доступных человеку образах и понятиях здравого смысла с привлечением привычных аналогий из классической науки для введения новых знаний в общекультурный контекст в целом искажают и огрубляют картину микромира, часто закрепляя в сознании удобные популярные заблуждения.
В некоторых случаях в картину микромира даже вносятся элементы антропоморфизма, вроде представлений о свободе воли электрона при трактовке вероятностного и неоднозначного поведения квантовых объектов. Такие гипотезы довольно серьезно обсуждались неспециалистами в первой половине 20-го века, однако в действительности подобные эффекты, характерные для микромира, подпадают под действие принципа неопределенности и объясняется чисто естественнонаучным образом. (См. также: Электрон, Позитрон, Нейтрон).