«010400 Физика»

Вид материалаПрограмма

Содержание


Iii. электричество и магнетизм
Тематический план
Количество часов
Электромагнитная индукция
Всего по курсу
Подобный материал:
1   2   3   4   5   6   7


СОДЕРЖАНИЕ

Тема 1:Введение. Предмет молекулярной физики. Основные экспериментальные факты, свидетельствующие о дискретном строении вещества. Тепловое движение с точки зрения молекулярных представлений. Масштабы физических величин в молекулярной теории. Массы и размеры молекул. Число Авогадро. Особенности межмолекулярного взаимодействия. Агрегатные состояния и характер теплового движения в газах, жидкостях и твердых телах.

Тема 2:Статистический подход к описанию молекулярных явлений. Статистические закономерности и описание системы многих частиц. Макроскопическое и микроскопическое состояние системы. Молекулярная система как совокупность частиц и как сплошная среда. Тепловое равновесие систем. Условия равновесия.

Тема 3:Идеальный газ. Модель идеального газа. Равновесное пространственное распределение частиц идеального газа. Биноминальное распределение (распределение Бернулли). Предельные случаи биноминального распределения: распределения Пуассона и Гаусса. Флуктуации плотности идеального газа. Малость относительных флуктуаций. Молекулярная теория давления идеального газа.

Тема 4:Понятие температуры. Принципы конструирования термометра. Термометрическое вещество и термометрическая величина. Эмпирические шкалы температур. Шкала температур на основе свойств идеального газа. Уравнение состояния идеального газа (уравнение Клапейрона - Менделеева).

Тема 5:Распределение молекул газа по скоростям. Распределение Максвелла. Характерные скорости молекул. Принцип детального равновесия. Наивероятнейшая, средняя и среднеквадратичная скорости молекул газа. Распределение молекул по компонентам скоростей. Экспериментальная проверка распределения Максвелла.

Тема 6:Идеальный газ во внешнем потенциальном поле. Распределение Больцмана. Барометрическая формула. Распределение Максвелла - Больцмана и его экспериментальная проверка.

Тема 7:Броуновское движение. Столкновения молекул в газе. Длина свободного пробега. Частота соударений. Газокинетический диаметр. Рассеяние молекулярных пучков в газе. Теорема о равномерном распределении кинетической энергии по степеням свободы. Броуновское движение. Формула Эйнштейна. Опыты Перрена по определению числа Авогадро.

Тема 8:Термодинамический подход к описанию молекулярных явлений. Термодинамические параметры. Нулевое начало термодинамики. Понятие термодинамического равновесия. Принцип термодинамической аддитивности. Физические ограничения термодинамической теории. Квазистатические процессы. Обратимые и необратимые процессы.

Тема 9:Первое начало термодинамики. Теплоёмкость системы. Теплоемкость идеального газа. Связь теплоемкости газа с числом степеней свободы молекул. Уравнение Майера. Политропический процесс. Уравнение политропы и его частные случаи. Классическая теория теплоемкости твердых тел. Закон Дюлонга и Пти. Фундаментальные трудности классической теории теплоемкости.

Тема 10:Циклические процессы. Преобразование теплоты в работу. Нагреватель, рабочее тело, холодильник. Коэффициент полезного действия. Тепловой двигатель и холодильная машина. Цикл Карно и его КПД.

Тема 11:Второе начало термодинамики. Две теоремы Карно. Термодинамическая шкала температур и её тождественность идеально-газовой шкале. Нестандартные единицы измерения температуры. Неравенство Клазиуса. Второе начало термодинамики. Формулировка Клазиуса и Томсона (Кельвина). Их эквивалентность.

Тема 12:Понятие энтропии термодинамической системы. Закон возрастания энтропии в неравновесной изолированной системе. Энтропия и вероятность. Микро- и макросостояния системы. Термодинамическая вероятность. Принцип Больцмана. Статистическая интерпретация второго начала термодинамики.

Тема 13:Реальные газы и жидкости. Реальные газы. Изотермы Амага. Уравнение Ван-дер-Ваальса. Внутренняя энергия газа Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса. Критическое состояние. Область двухфазных состояний. Метастабильные состояния. Критические параметры газа Ван-дер-Ваальса. Закон соответственных состояний. Силы межмолекулярного взаимодействия. Потенциал Леннарда - Джонса. Эффект Джоуля - Томсона. Методы получения низких температур.

Тема 14:Поверхностные явления в жидкостях. Коэффициент поверхностного натяжения. Краевой угол. Давление под искривленной поверхностью жидкости. Формула Лапласа. Капиллярные явления.

Тема 15:Твердые тела. Кристаллические и аморфные состояния. Кристаллы. Симметрия кристаллов. Элементы точечной симметрии: ось симметрии, плоскость симметрии, центр инверсии, инверсионная ось симметрии, зеркально-поворотная ось симметрии. Трансляция и трансляционная симметрия. Кристаллическая решетка. Элементарная ячейка. Сингонии. Решетка Браве. Индексы Миллера. Изоморфизм и полиморфизм. Фазы переменного состава. Дефекты в кристаллах. Дислокации. Понятие о жидких кристаллах.

Тема 16:Фазовые переходы первого и второго рода. Фаза. Классификация фазовых переходов по Эренфесту. Термодинамический потенциал Гиббса как функция состояния. Фазовые переходы первого рода. Уравнение Клапейрона - Клаузиуса. Скрытая теплота перехода. Тройная точка. Фазовые переходы второго рода. Аномалии теплового расширения при фазовых переходах.

Тема 17:Явления переноса. Понятие о релаксационных процессах в молекулярных системах. Диффузия: закон Фика. Внутреннее трение (перенос импульса): закон Ньютона - Стокса. Теплопроводность: закон Фурье. Уравнение переноса. Явление переноса в газах. Связь коэффициентов переноса с молекулярно-кинетическими характеристиками газа.


ЛИТЕРАТУРА

Основная литература.

1. А.К.Кикоин, И.К.Кикоин. Молекулярная физика. М.: Наука, 1976.

2. Д.В.Сивухин. Общий курс физики. Т.2. Термодинамика и молекулярная физика. М.: Наука, 1990.

3. А.Н.Матвеев. Молекулярная физика. М.: Высшая школа, 1987.

4. В.Л.Гинзбург, Л.М.Левин, Д.В.Сивухин, И.А.Яковлев. Сборник задач по общему курсу физики. Термодинамика и молекулярная физика.(Под редакцией Д.В.Сивухина). М.: Наука, 1988.

5. П.С.Булкин, И.И.Попова. Общий физический практикум. Молекулярная физика. Под редакцией А.Н.Матвеева и Д.Ф.Киселева. Издательство Моск. Универ., 1988.

Дополнительная литература.
  1. Ф.Рейф. Статистическая физика. Берклеевский курс физики. Т.5. М.: Наука, 1986.
  2. Р.Фейман, Р.Лейтон, М.Сэндс. Феймановские лекции по физике. Вып.4. Кинетика. Теплота. Звук. М.: Мир, 1977.
  3. Р.В.Поль. Механика, акустика и учение о теплоте. М.: Наука, 1971.
  4. И.В.Савельев. Курс общей физики. Т.1. М.: Наука, 1986.

III. ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ


ПОЯСНИТЕЛЬНАЯ ЗАПИСКА


Курс “Электричество и магнетизм” является одним из важнейших разделов курса общей физики, на основе которого в дальнейшем можно развивать более углубленное и детализированное изучение физики электрических и магнитных явлений в рамках цикла курсов по теоретической физике и дисциплин специализаций. Требования, предъявляемые к курсу, являются общими для всех разделов курса общей физики и определяются в первую очередь мировоззренческой и методологической направленностью курса и изложены в общей “Пояснительной записке” к дисциплине курса “Общей физики”. В рамках единого подхода классической физики необходимо рассмотреть все основные электрические и магнитные явления и процессы, происходящие в природе, вывести основные законы и получить их выражение в виде математических уравнений. Особое значение должно быть придано показу фундаментальных связей между электрическими и магнитными явлениями. Кроме освоения основных понятий необходимо научить студентов количественно решать конкретные задачи в рамках принятых приближений. Еще одним важным требованием является необходимость научить студентов основам постановки и проведения физического эксперимента с последующим анализом и оценкой полученных результатов. В этом случае необходимо привлечение компьютерных технологий, что указывает на необходимость не только традиционных межпредметных связей с дисциплинами математического цикла, но и с курсами, рассматривающими новые информационные технологии.

Основной формой изложения материала курса являются лекции, важнейшей составной частью которых является использование реальных и компьютерных физических экспериментов.

При изучении курса “Электричество и магнетизм ” предусматривается Общий Физический Практикум, при выполнении которого у студентов формируются навыки и умения применения теоретического материала к анализу конкретных физических ситуаций, использования современной измерительной аппаратурой, принципом ее действия и методами автоматизации и компьютеризации процессов сбора и обработки физической информации. Целью практикума также является изучение основных закономерностей процессов и оценка порядков изучаемых величин, точности и достоверности полученных результатов. В соответствии со стандартом высшего профессионального образования дисциплина “Электричество и магнетизм “ осваивается студентами на 2 курсе (3 семестр)

ТЕМАТИЧЕСКИЙ ПЛАН


по курсу «Электричество и магнетизм»





Темы


Количество часов

Лекций

Лабор.-практ.


Самостоят.

работа

Всего

1.

Электростатика

8

6

6

20

2.

Проводники в электрическом поле

2

2

4

8

3.

Диэлектрики в электрическом поле

4

4

4

12

4.

Постоянный электрический ток

4

4

6

14

5.

Постоянное магнитное поле

4

4

6

14

6.

Магнетики

4

4

8

16

7.
Электромагнитная индукция

2

4

4

10

8.

Электромагнитные колебания

2

4

4

10

9.

Переменный синусоидальный ток

2

2

4

8

10

Механизмы электропроводности

10

4

13

27

11

Движение заряженных частиц в эл. и магн. Полях

-

2

4

6

12

Уравнения Максвелла

2

2

4

8

13

Электромагнитные волны

2

2

4

8



Всего по курсу


46

44

71

161