Волновые явления теплопроводности: Системно-структурный подход. Изд. 2
Вид материала | Документы |
СодержаниеПредисловие ко второму изданию |
- Системно-структурный подход в формировании творческого мышления младшего школьника, 185.63kb.
- Доклад на тему «Системно-деятельностный подход в учебной и во внеурочной деятельности», 138.19kb.
- Системно-деятельностный подход в воспитании, 112.22kb.
- Системно-деятельностный подход в обучении математике, 54.31kb.
- Удк 159. 9475 : 378, 169.56kb.
- Задачи методической работы: Обновить педагогическую систему учителя на основе выделения, 40.64kb.
- Тематический план занятий на модульных курсах Центра системно-деятельностной педагогики, 595.02kb.
- Системно-тектологические представления как мировоззрение и основа современной инженерной, 112.93kb.
- Структурный функционализм структурный функционализм, 154.37kb.
- Аналитическое и численное исследование некоторых задач теплопроводности (диффузии), 18.76kb.
Волновые явления теплопроводности: Системно-структурный подход. Изд.2.
Шашков А.Г., Бубнов В.А., Яновский С.Ю. 2004. 296 с. 126 руб.
Аннотация
В настоящей книге обсуждены физические аспекты уравнения теплопроводности гиперболического типа, нелинейного параболического уравнения и интегродифференциального уравнения с релаксационными ядрами. Рассмотрены парадоксы классической теории теплопроводности и проведены молекулярно-кинетические обоснования гипотезы о релаксации теплового потока. При рассмотрении математических аспектов гиперболического уравнения теплопроводности предложена систематизация дифференциальных операторов теплопроводности, прослежена связь между линейным гиперболическим и нелинейным параболическим операторами теплопроводности. Книга рассчитана на научных и инженерно-технических работников, специализирующихся в области теплофизики и термодинамики. Может быть полезна аспирантам и студентам теплофизических специальностей.
Оглавление
Предисловие ко второму изданию
Предисловие
Глава 1.
Физические аспекты уравнения теплопроводности гиперболического типа
1.1. О парадоксах классической теории теплопроводности
1.2. Молекулярно-кинетическое обоснование гипотезы о релаксации теплового потока
1.3. Анализ изотермических поверхностей
1.4. Вычисление скорости тепловых волн на основе данных косвенных измерений
1.5. Проявление аналогии между тепловыми и электромагнитными полями
1.6. Релаксация теплового потока в конвективном теплообмене
Глава 2.
Математические аспекты гиперболического уравнения теплопроводности
2.1. Дифференциальные операторы теории теплопроводности
2.2. Классическое решение телеграфного уравнения
2.3. Свзь между линейным гиперболическим и нелинейным параболическим операторами теплопроводности
2.4. Локализация тепла
2.5. Возникновение и затухание тепловых волн
2.6. Решение некорректно поставленных задач теории теплопроводности
Глава 3.
Системно-структурный анализ оператора теплопроводности гиперболического типа при разных краевых условиях
3.1. Теплопроводность в полуограниченном стержне
3.2. Теплопроводность в ограниченном стержне
3.3. Теплопроводность в полупространстве и слое вещества под действием потока лучистой энергии
3.4. Задача теплопроводности для полупространства с подвижной границей
3.5. Теплопроводность в полуограниченных стержнях, приведенных в соприкосновение свободными торцами
3.6. Методы определения времени релаксации теплового потока
Глава 4.
Cистемно-структурный анализ уравнений термоупругости волнового типа
4.1. Дифференциальные и интегральные операторы теории термоупругости
4.2. Термоупругие напряжения в полупространстве
4.3. Температурные напряжения в вязкоупругом полупространстве
4.4. Одномерные температурные напряжения в магнитотермоупругом полупространстве
4.5. Температурные напряжения в упругом стержне, вызванные радиационным нагревом
4.6. Температурные напряжения в бесконечном цилиндрическом стержне, нагреваемом от источников тепла
Глава 5.
Волны в термоупругих средах
5.1. Плоские гармонические термоупругие волны (классическая модель)
5.2. Термоупругие волны в среде с релаксацией теплового потока
5.3. Волны в термоупругой среде с температурно-скоростной
зависимостью
5.4. Гармонические термоупругие волны в средах с тепловой памятью
5.5. Термоупругие волны ускорения в средах с тепловой памятью
Приложение 1. К решению проблемы некорректных задач теории теплопроводности Приложение 2. Эффект локализации тепла и его экспериментальное обоснование Литература
Предисловие ко второму изданию
Впервые книга была издана в 1993 г. издательством "Навука i тэхнiка" (г.Минск). В 1996 г. книга была переведена на китайский язык.
Исследования авторов, составившие содержательную часть книги, начинались в семидесятых годах прошлого столетия, и они неоднозначно воспринимались научной общественностью, так как в теории теплопроводности господствовала парадигма, связанная только с использованием гипотезы Фурье. Из анализа научной литературы прошедшего столетия и настоящего можно заключить, что мало кто из исследователей знаком с исследованиями знаменитого немецкого физика Римана по данному вопросу. Риман впервые поставил под сомнение гипотезу Фурье применительно к процессу распространения тепла в анизотропных телах в работе "Математическое сочинение", в котором содержится попытка дать ответ на вопрос, предложенный знаменитейшей Парижской Академией. Напомним что сущность этого вопроса такова: определить, каково должно быть тепловое состояние произвольного твердого тела, чтобы система изотермических кривых, заданная в определенный момент времени, оставалась системой изотермических кривых в любой момент времени, т.е. чтобы температура точки выражалась в виде функции времени и еще двух вспомогательных переменных. Для ответа на этот вопрос Риман указал метод, позволяющий определить свойства твердого тела, допускающие такое движение тепла в нем, при котором возможна система кривых, постоянно остающихся изотермами. При этом оказалось, что конкретному виду изотермической поверхности соответствует вполне определенный дифференциальный оператор теплопроводности. Среди возможных операторов встречается и линейный оператор теплопроводности параболического типа как частный случай. Однако указанная работа Римана не была оценена современниками, и развитие теории теплопроводности пошло по пути поиска решений параболического оператора при разных начальных и граничных условиях. Этот путь теории теплопроводности оправдывается только тем, что потребности практики требовали изучения температурных полей в телах конечных размеров и различной формы. Но при этом не учитывался один из главных результатов работы Римана, сущность которого состоит в том, что параболическому оператору теплопроводности соответствует только строго определенный класс изотермических поверхностей и за пределы этого класса нельзя выйти расширением начальных и граничных условий. Именно поэтому попытка из параболического оператора получить несвойственные ему температурные поля за счет "навязывания" различных начальных и граничных условий привела к проблеме парадоксов и так называемых некорректных задач. Обсуждение о бесконечной скорости распространения тепла началось в пятидестых годах прошлого столетия. Для его устранения ряд исследователей стали вводить гипотезу о релаксации теплового потока. В рамках этой гипотезы процесс распространения тепла принял волновой характер, характеризующийся конечной скоростью распространения тепловых волн. При этом оказалось, что в ряде задач, рассмотренных с позиций параболического оператора теплопроводности, время релаксации оказалось очень малой величиной. Последнее обстоятельство позволяло считать гипотезу о релаксации теплового потока необоснованной. Однако дело здесь совсем в другом. По-видимому, в теории теплопроводности имеет место такой же дуализм, как в оптике. С одной стороны, процесс распространения тепла осуществляется потоком взаимодействующих частиц (атомов, молекул), с другой стороны - это волновой процесс. В первом случае он описывается параболическим оператором теплопроводности, и такие параметры этого оператора, как теплоемкость и теплопроводность, суть теплофизические константы среды, определяющие количественные характеристики теплопроводности. Во втором случае такими количественными характеристиками являются скорость тепловой волны и ее дисперсия. В данной книге как раз изучаются те условия теплопроводности, при которых процесс теплопроводности имеет волновой характер. Другой путь расширения класса решения линейного параболического оператора теплопроводности это метод квазиобращения. Сущность его состоит в том, что к известному оператору добавляется дополнительный член с малым множителем (например, квадрат лапласиана), далее новый оператор считается близким к исходному и изучаются его решения в зависимости от указанного множителя. К этому же направлению примыкает и метод регуляризации академика А.Н. Тихонова. Возможно, это направление представляет определенный интерес для математиков, но с физической точки зрения произвольная деформация исходного дифференциального оператора, отражающего опытный факт о том, что тепло течет от нагретого тела к холодному, не имеет никакого смысла. Наоборот, при таком подходе можно вступить в противоречие с указанным фактом. Еще один путь расширения класса решений параболического оператора состоит в превращении его в нелинейный оператор за счет предположения зависимости коэффициента температуропроводности от температуры. На этом направлении получены интересные результаты, и прежде всего так называемое явление локализации тепла, сущность которого состоит в том, что температура распространяется только на конечную глубину, а в граничной точке в предельный момент времени температура равна бесконечности, т.е. имеет место неограниченный рост температуры в граничной точке. Слабость указанного направления состоит в том, что для получения такого решения принимается такая зависимость температуропроводности от температуры, которая не имеет места в теплофизических измерениях. В работе автора "Эффект локализации тепла и его экспериментальное обоснование" (ТВТ, т.23, 1990, с.934--939) показано, что для адаптации функциональной зависимости коэффициента теплопроводности к опытным данным необходимо и в этом случае ввести гипотезу о релаксации теплового потока.
Бубнов В.А. доктор технических наук, профессор
Предисловие
Длительное время в научной литературе господствовало мнение о том,что обилие явлений переноса тепла может быть описано в рамках линейного уравнения теплопроводности параболического типа при наличии широкого спектра начальных и граничных условий. Именно поэтому развитие науки о теплообмене в определенный период шло по пути поиска решений указанного уравнения при разных формах тела и экспериментального определения коэффициентов теплопроводности, представляющих собой теплофизические характеристики материала. Однако еще в прошлом столетии Риман при изучении теплового состояния тела показал, что форма изотермических поверхностей определяется не граничными и начальными условиями, а видом дифференциального оператора теплопроводности. Применительно к заданному уравнению для изотермической поверхности им был предложен способ построения дифференциальных операторов теплопроводности, которые содержат производные по времени любого порядка. Указанная работа Римана прошла незамеченной для многих исследователей. И только в 1930--1970 гг. ряд исследователей (среди отечественных А.В. Лыков) стали обращать внимание на некоторые парадоксы в решениях классического уравнения теплопроводности. Один из способов разрешения этих парадоксов осуществляли введением гипотезы о релаксации теплового потока, которая приводила к уравнению теплопроводности гиперболического типа. Устранить парадокс о бесконечной скорости распространения тепла позволяют также нелинейная модель теплопроводности и теория теплопроводности с учетом тепловой памяти материала. Развитие таких модифицированных моделей теплопроводности способствовало обобщению классической теории термоупругости, что позволило устранить парадокс о бесконечной скорости распространения термоупругих возмущений. В монографии проведено исследование математических моделей процессов теплопроводности и термоупругости, учитывающих конечную скорость распространения тепла, а также математизацию операторов теплопроводности и термоупругости. С целью наглядности и лучшего понимания волновых процессов теплопроводности в книге используют системно-структурный подход. При этом процесс переноса тепла в исследуемом материале представлен структурной схемой, состоящей из элементов оператора теплопроводности. Такие схемы по своей сути являются математическими моделями, отражающими пространственно-временное формирование температурных полей и тепловых потоков на границе и внутри исследуемого объекта. Указанный подход позволяет рассматривать достаточно сложные задачи и придавать их решению прикладной инженерный характер.