Терещенко Александр Петрович, учитель физики моу «Средняя общеобразовательная школа №10 села Солдато-Александровского Советского района» Ставропольского края реферат

Вид материалаРеферат
Подобный материал:
1   2
75

Установление связей данного явления с другими, ранее изученными явлениями, и объяснение природы явления, или причины его возникновения. Например, при изучении явления конвекции обнаруживается связь с ранее изученными явлениями, такими, как тепловое расширение тел и всплывание тел в жидкостях или газах. В результате установления этой связи выясняют причину изучаемого явления — конвекции, которая заключается в следующем: нагретые части жидкости или газа всплывают, при этом происходит перенос энергии от нижних слоев жидкости или газа к верхним.

Введение новых физических величин и констант, характеризующих изучаемое явление. Представление о физическом явлении будет полным лишь в том случае, если ученик ясно представляет себе типичные черты и характерные особенности данного явления, отличающие это явление от других, известных ученику ранее. Наиболее лаконично характерные особенности явлений обычно выражаются посредством введения физических величин. Например, важнейшими особенностями явлений плавления и отвердевания кристаллических тел являются постоянство температуры и необходимость сообщения телу строго определенного (при данных условиях) количества теплоты в течение всего процесса. Эти особенности характеризуются температурой плавления и удельной теплотой плавления. Соответственно при изучении явлений испарения и конденсации вводятся понятия «температура кипения» и «удельная теплота парообразования» и т. д. Формирование понятия о физической величине, характеризующей основную качественную особенность изучаемого явления, представляет важный этап в познании явления.

Установление количественных закономерностей, относящихся к рассматриваемому явлению. Так, например, при изучении ускорения тела в равнопеременном движении выявляется зависимость пути и скорости от времени; при изучении плавления — зависимость между количеством теплоты, необходимым для плавления, и массой тела; при изучении отражения света — зависимость между углами падения и отражения и т. д.

Практическое применение физических явлений. Завершающим этапом изучения какого-либо явления оказывается его использование для объяснения принципов действия технических установок, для решения задач и выполнения лабораторно-практических заданий, а также для объяснения других явлений природы. На этом этапе происходит закрепление, уточнение и углубление знаний о физическом явлении. Конечно, далеко не всегда изучение физического явления полностью укладывается в эту схему. Во многих случаях, особенно в VII—VIII классах, изучение явлений ограничивается качественным описанием. Некоторые пункты схемы могут выпадать. Например, не всегда может быть вскрыта физическая природа явления, не всегда соответствует приведенной схеме последовательность этапов изучения явления, но тем не менее, когда физическое явление изучается достаточно полно (с качественными и количественными оценками), приведенная схема является наиболее типичной.

Однако вернемся к вопросу о том, какие возможности для проблемного обучения открываются при изучении физического явления. Надо сказать, что в той или иной степени проблемный подход может быть использован на всех этапах изучения физического явления, но наибольшие возможности для такого обучения открываются при выяснении природы явления. Рассмотрим этот вопрос на примере изучения явления самоиндукции в XI классе.

Из жизненной практики с явлением самоиндукции учащиеся незнакомы, хотя некоторые из них видели, как иногда при размыкании электрической цепи в воздушном промежутке между контактами рубильника вспыхивает искра. Поэтому для проблемного изучения явления самоиндукции необходим опорный эксперимент, в котором бы проступала основная особенность явления. Им может быть известный опыт с самоиндукцией при замыкании электрической цепи (рис. 23).

Берем катушку, рассчитанную на напряжение 220 В от универсального трансформатора, надетую на замкнутый сердечник, аккумулятор напряжением 3—6 В, реостат сопро­тивлением 20—30 Ом и лампу на напряжение 3,5 В или 6,3 В. Из опыта наглядно видна основная особенность явления: при замыкании цепи наблюдается замедленное нарастание силы тока в ветви, содержащей катушку (рис.24). На первый взгляд учащимся кажется, что наблюдаемое явление противоречит закону Ома для участка цепи, поскольку они знают, что напряжение на ветвях параллельного соединения одинаково и одинаковыми были подобраны сопротивления ветвей. Однако они уже знакомы с явлением электромагнитной индукции и знают основное условие возникновения ЭДС индукции, поэтому у них имеются необходимые знания для самостоятельного теоретического исследования явления самоиндукции и выяснения причины его возникновения. Вопрос: «Как объяснить наблюдаемое явление?» — служит началом коллективного решения данной проблемы.


2.5.2 Проблемное изучение физических законов


Ознакомление с физическим явлением (исключая вопросы его применения) в общем случае заканчивается установлением закономерности, описывающей это явление или устанавливающей связь между данным явлением и другими, ранее изученными. Закономерности могут носить либо частный, либо общий характер. Первые нередко являются следствиями вторых.

Закономерности общего характера, из которых могут быть получены разнообразные следствия, представляют собой физические законы. Закон — это необходимое, существенное, устойчиво повторяющееся отношение между явле­ниями. Физические законы наряду с основными положениями физических теорий являются наиболее важными и существенными обобщениями в физике, поэтому без их знания и глубокого понимания не может быть надлежащего усвоения курса физики. Проблемный подход к изучению физических законов часто позволяет добиться глубокого, неформального понимания учащимися физической сущности этих законов.

Изучаемые в школе физические законы по способу их установления можно разделить на следующие две группы: законы, устанавливаемые экспериментально, и законы, устанавливаемые теоретически.

Естественно, что организация проблемного изучения какого-либо закона будет зависеть от того, каким способом — экспериментально или теоретически — устанавливается этот закон. Термин «устанавливается» нельзя понимать буквально, так как имеется в виду небольшая точность измерений на школьных приборах и недостаточное число опытов, а также другие обстоятельства. Об этом должны знать и учащиеся.

Законы, устанавливаемые экспериментально. В школьном курсе физики есть законы, устанавливаемые только опытным путем. К их числу относятся закон Паскаля, закон Ома для участка цепи (в VIII классе), законы Ньютона, закон Кулона и некоторые другие. Никаких теоретических обоснований этим законам не дано, хотя в некоторых случаях они могут быть выведены и теоретически, как, например, закон Ома для участка цепи.

Опытное получение закона может быть организовано либо на основе демонстрационного эксперимента учителя, либо путем самостоятельного эксперимента учащихся. Обычно первый из этих способов используют при условии, если эксперимент технически сложен для самостоятельного выполнения его учениками или сложной является его идея (тогда целесообразнее организовать коллективный поиск) и если для выполнения опыта требуются приборы, выпускаемые промышленностью только в качестве демонстрационных. Могут быть и другие соображения, например экономия времени.

Рассмотрим, как организовать проблемное обучение в том случае, когда в основу работы положен демонстрационный эксперимент учителя. Проблемный подход при этом чаще всего состоит в привлечении учащихся к поиску общей идеи экспериментального исследования и планированию его отдельных этапов (после уяснения исходной задачи, поставленной учителем). Такого рода проблемный подход типичен для тех случаев, когда на опыте исследуется функциональная зависимость между физическими величинами, т. е. когда закон получает математическое выражение.

Если же закон, устанавливаемый на основе опыта, носит качественный характер, то более целесообразно ставить проблемы, требующие от учащихся выявления общих характерных особенностей и закономерностей в протекании физических явлений. В этом случае учитель демонстрирует последовательно несколько опытов, а ученикам предлагает выявить в этих опытах то существенное, что характеризует демонстрируемое явление, т. е. установить закономерность в протекании этого явления.


2.5.3 Проблемное изучение физических теорий


Проблемное обучение особенно эффективно при изучении фундаментальных вопросов курса физики, которые носят характер обобщений, раскрывают сущность важнейших идей и понятий физики. В этих случаях дополнительная затрата времени, неизбежная при проблемном изучении материала, впоследствии окупается. Во-первых, глубокое неформальное усвоение таких вопросов необходимо для формирования у учащихся правильных представлений о физической картине мира, формирования научного мировоззрения. Во-вторых, оно ведет в дальнейшем к существенной экономии времени при изучении частных вопросов и решении задач. Сказанное прежде всего относится к изучению физических теорий. Какие возможности для углубленного изучения физических теорий открывает проблемное обучение?

Развитие физических теорий всегда происходило на основе преодоления противоречий между сложившимися представлениями и новыми фактами, опытными данными, которые не укладывались в рамки этих представлений. Иногда противоречие между опытом и теорией приводило к полному краху теории. Так обстояло дело, например, с теорией теплорода, когда в результате установления известных опытных фактов произошло ее крушение, повлекшее за собой возникновение молекулярно-кинетической теории; были опровергнуты теории электрических и магнитных «флюидов», теория «дальнодействия» и т. д. В некоторых случаях новые опыты, вступавшие в противоречие с теорией, не приводили к ее полному опровержению, но помогали выявить относительный характер теории, определить границы ее применимости.

Во многих случаях противоречия между теорией и опытом вели к уточнению отдельных существенных положений теории, ее усовершенствованию. Например, представления об «атоме электричества», составляющие основу электронной теории, много раз видоизменялись в результате появления новых опытных данных. Противоречия между опытом и теорией нередко превращались в великие проблемы в физике, их решение вызывало к жизни появление новых идей, новых теорий. Уяснение учащимися важнейших противоречий между опытом и теорией позволяет им глубже понять логику развития физики и сами идеи, заложенные в основу физических теорий. Как уже говорилось, подведение учащихся к осознанному пониманию решающих проблем, привлечение их к размышлению над этими проблемами представляет собой надежный путь глубокого уяснения экспериментальных основ, на которых строилась новая теория. Даже в том случае, если поставленные проблемы в конце концов решаются учителем (проблемное изложение), появление новых идей оказывается до некоторой степени «пережитым» учащимися, а возникновение этих идей воспринимается ими как закономерный и неизбежный результат развития науки

Рассмотрим в качестве примера, как можно организовать проблемное изучение квантовой теории света в XI классе. Знакомство с нею происходит при прохождении темы «Световые кванты».

Здесь учащиеся знакомятся с одним из фундаментальных понятий современной физики — понятием о кванте света — фотоне, впервые сталкиваются и с парадоксами современной физики. С удивлением узнают учащиеся о том, что одно и то же физическое явление — свет, имеющее единую электромагнитную природу, может столь по-разному проявлять себя: с одной стороны, как типично волновой процесс в явлениях интерференции, дифракции, поляризации, а с другой — как поток частиц света — фотонов — в явлении фотоэффекта. Не сразу и не без труда свыкаются учащиеся с мыслью о дуализме свойств света.

Задача учителя при изучении данной темы состоит в том, чтобы учащиеся хорошо усвоили основные положения квантовой теории света:

- свет может излучаться, распространяться и поглощаться только отдельными порциями — квантами (фотонами)

- энергия кванта зависит от частоты (длины волны) света и определяется формулой E = hv, где h — постоянная Планка, равная 6,62 10 -34 Дж с, a v — частота света;

- интенсивность света зависит от плотности потока фотонов и их энергии;

- при взаимодействии с веществом вся порция света может поглотиться целиком (или фотон не поглощается совсем), поэтому говорить о доле фотона не имеет смысла;

- процесс поглощения энергии фотона веществом (электроном) происходит практически мгновенно.

Будучи хорошо усвоенными, эти положения позволяют учащимся легко понять законы и все особенности фотоэффекта, а также основной закон фотохимических реакций; позднее их знание облегчит изучение темы «Атом и атомное ядро». Поэтому важно, чтобы учащиеся не только поняли сформулированные выше положения, но и твердо запомнили их. Роль квантовой теории, необходимость и неизбежность ее появления по-настоящему могут быть поняты учащимися только в том случае, если они будут ясно представлять себе суть основных затруднений, с которыми столкнулась волновая теория света при попытках объяснения основных особенностей фотоэффекта: наличия красной границы, безынерционности фотоэффекта, независимости скорости фотоэлектронов от интенсивности света (освещенности) и зависимости ее от частоты света. Иначе говоря, для того, чтобы эта проблемная по содержанию тема была достаточно глубоко усвоена учащимися, необходимо ее изучению придать проблемный характер, сконцентрировав внимание на тех моментах, которые привели к кризису волновой теории света.

Отметим, что проблемное изучение данной темы требует некоторой подготовительной работы: например, при изучении электромагнитных волн нужно обратить внимание на зависимость энергии электромагнитной волны от амплитуды вектора электрической напряженности Е и вектора магнитной индукции B; при изучении электромагнитной теории света объяснить, что интенсивность света и освещенность (оцениваемые по энергетическим характеристикам, а не по зрительным ощущениям) пропорциональны квадрату амплитуды напряженности электрического поля волны. При изучении вопроса «Электромагнитные излучения разных длин волн» (в теме «Электромагнитные волны») нужно отметить, что в сплошных раскаленных до белого свечения (Т = 3000 К) твердых телах (например, в нитях электроламп) представлены все длины волн (от инфракрасных до фиолетовых), при более высоких температурах в спектре преобладает ультрафиолетовое излучение. Характерной особенностью спектра электрической дуги является высокий процент ультрафио­летового излучения.

При проведении уроков по теме «Световые кванты. Действия света» для создания проблемных ситуаций можно использовать реальные противоречия, имевшие место в истории развития физики,— «классические» противоречия между старой теорией и новым опытом. Противоречия этого типа являются фундаментом проблемного изучения физических теорий. Они позволяют формулировать центральные проблемы, ведущие к уяснению учащимися основного содержания физических теорий.


3. Заключение.


В заключение надо отметить, что все физические явления, законы и теории, изучение которых предусмотрено программой, описаны в учебниках, но далеко не все они изложены в проблемном плане. Это естественно. Такое изложение привело бы к недопустимому увеличению объема учебника, да и далеко не всегда то, что можно изучить проблемно в ходе беседы на уроке, может быть изложено проблемно на страницах учебника. Таким образом, проблемная организация изучения материала — это задача, решаемая самим учителем. Но учебник служит при этом четким ориентиром, определяющим примерный объем и основное содержание изучаемых вопросов, поэтому значительные отступления от учебника при проблемном изучении конкретных вопросов в подавляющем большинстве случаев нецелесообразны.


4. Литература


  1. Бабанский Ю. К- Методы обучения в современной общеобразовательной школе.— Москва: Просвещение, 1985.
  2. Банков Ф. Я- Проблемно-программируемые задания по физике в средней школе.— Москва: Просвещение, 1982.
  3. Бугаев А. И. Методика преподавания физики в средней школе.— Москва: Просвещение, 1981.
  4. Гайфуллин В.Г., Мингазов Р.Х. Активизация познавательной деятельности на уроках физики. Казань: "Магариф", 1993 год.
  5. Зверева Н. М. Активизация мышления учащихся на уроках физики.— Москва: Просвещение, 1980.
  6. Ланге В. Н. Экспериментальные физические задачи на смекалку.— Москва: Наука, 1979.
  7. Махмутов М. И. Организация проблемного обучения в школе.— Москва: Просвещение, 1977.
  8. Мултановский В. В. Физические взаимодействия и картина мира в школьном курсе.— Москва: Просвещение, 1977.
  9. Низамов Р.А. Активизация учебной деятельности учащихся. Казань: Татарское книжное издательство, 1989 год.
  10. Охитина Л.Т. Психологические основы урока. Москва: "Просвещение", 1977 год
  11. Разумовский В. Г. Развитие творческих способностей учащихся в процессе обучения физике.— Москва: Просвещение, 1975.
  12. Суорц К. Э. Необыкновенная физика обыкновенных явлений.— Москва Наука, 1987.