Электрические и фотоэлектрические явления в гетероструктурах и диодах шоттки на основе полупроводников a 3 b 5 и кремния и их применение в сенсорах водорода
Вид материала | Автореферат |
- Курс "Оптические и фотоэлектрические свойства полупроводников", 9.84kb.
- Учебно-методический комплекс дисциплина «физика твёрдого тела» Челябинск, 194.36kb.
- 1992 physics and technics of semiconductors vol. 26. N 6 Вольт-амперные характеристики, 37.12kb.
- Программа вступительного экзамена по специальности 05. 27. 06 "технология и оборудование, 82.94kb.
- Урок-лекция по химии. 11 Класс. Тема: «изучение кремния и его соединений», 141.78kb.
- Авторы программы: доцент Морозов В. Б., доцент Соломатин В. С., профессор Шувалов, 87.32kb.
- «Электрические явления», 107.49kb.
- 1 Электрические сигналы, их классификация и параметры, 101.06kb.
- Программа Государственного экзамена по подготовке магистра по направлению «Физика полупроводников., 53.9kb.
- Руководитель проекта, 71.87kb.
Научные положения, выносимые на защиту
- В объемных кристаллах InAs время жизни неравновесных носителей при высоких температурах T≥300 K и больших концентрациях носителей (n0, p0>1016 см-3)
лимитировано Оже-рекомбинацией, при этом преобладает процесс с переносом
дырки в спин-орбитально отщепленную зону (CHSH процесс). При низких
концентрациях носителей (n0,p0<1015 см-3) доминирует межзонная излучательная рекомбинация.
- В эпитаксиальных структурах с p-n переходом на основе твердых растворов InAsSbP токи через переход в области прямых смещений определяются двумя составляющими: при низких температурах (T<200 K) и малых смещениях – рекомбинацией носителей в области пространственного заряда. При высоких температурах (T>200 K) существенным становится вклад диффузионной компоненты, обусловленный рекомбинацией носителей в нейтральной области.
- Механизм протекания тока в диодах Шоттки Au-p-InAs определяется генерацией-рекомбинацией при концентрации носителей p=1016-1017 см 3, а при низких концентрациях – туннелированием через глубокие центры.
- Впервые обнаруженное сильное изменение фотоэдс в атмосфере водорода
в структурах палладий-полупроводник (InP, InGaAs, GaP, Si), превышающее
на один-два порядка изменение темнового тока, происходит. главным образом,
за счет изменения высоты барьера диода Шоттки (увеличение или понижение),
что может быть использовано для детектирования водорода.
- Усиление фототока при обратном смещении в структурах на основе Pb-SiO2-n-Si
с туннельно-тонким слоем диэлектрика обусловлено увеличением туннельного тока между металлом и полупроводником вследствие наличия сильного электрического поля в области пространственного заряда (E>104 В/см).
- Перенос тока в диодах Шоттки на основе пористого кремния Pd-por-Si обусловлен двойной инжекцией электронов из подложки n-Si через гетерограницу в пористый слой и дырок через барьер Шоттки. Долговременная релаксация фотоэдс
и темнового тока при воздействии водорода (до 10-15 мин) обусловлена перезарядкой глубоких уровней в слое пористого кремния. Этот эффект может быть использован в устройствах памяти и накопления водорода в микротопливных элементах.
- Предложен новый тип фотоэлектрических сенсоров водорода и водородосодержащих соединений, использующих изменение фотоэдс в диодах Шоттки и гетероструктурах на основе полупроводников A3B5 и Si.
Апробация работы
Результаты диссертационной работы были доложены на 2ом Международном Форуме по Нанотехнологиям RUSSNANOTECH, Москва 6-8 октября 2009 г.; 16th Int. Conference IMECO–TC2, Prague, Czech. Rep., 25-27 August, 2008; Международной конференции
SPIE-Europe “Optical Sensors and Applications”, Czech. Rep., Prague, 2007; Первой и Второй Российских конференциях по водородной энергетике, Санкт-Петербург, 2004 и 2005 гг.; XVI Международной научно-технической конференции по фотоэлектронике и приборам ночного видения, Москва, 2000; 2nd Intern. Conference on Advanced Semiconductor Devices and Microsystems, Slovakia, Smolenice, 1998; Международной конференции Infrared
Spaceborn, Remote Sensing V, Boston, USA, 1997; Научно-технических конференциях
командно-инженерного училища (ВАКИУ), Казань, 1984, 1987, 1995, 1996 и 1997 гг.;
Всесоюзной конференции «Фотоэлектрические явления в полупроводниках», Ашхабад, Туркмения, 1991 г., а также на научных семинарах Физико-Технического института им. А.Ф. Иоффе РАН и кафедры физики Казанского филиала Санкт-Петербургского
артиллерийского университета; Всесоюзной конференции «Тройные полупроводники
и их применение», Кишинев, 1984. Результаты работы как в целом, так и отдельные
ее части докладывались также на семинарах и научно–технических совещаниях
на кафедре общей физики в Казанском инженерном училище им. М.Н. Чистякова
и на семинарах в Физико–Техническом институте им. А.Ф. Иоффе Российской Академии Наук.
Публикации
Список публикаций автора по теме диссертации, включающий 36 печатных работ
в рецензируемых изданиях, 22 публикации в материалах научно-технических сборников и научных конференций и 1 монографию, приведен в конце диссертации.
Структура и объем работы
Диссертация состоит из введения, семи глав, заключения и списка литературы. Объем диссертации составляет 277 страниц, включая 139 рисунков и 4 таблицы. Список литературы содержит 59 наименований авторских публикаций и 131 наименование цитируемой литературы.
Содержание диссертации
Во введении обоснована актуальность темы диссертации, сформулированы цель
и научная новизна работы, перечислены научные положения, выносимые на защиту.
В первой главе рассмотрены излучательные и безызлучательные процессы
в кристаллах арсенида индия n- и p- типа с различной концентрацией носителей заряда
и проведено сопоставление экспериментальных результатов с теоретическими.
Исследованы фотопроводимость и фотомагнитный эффект, и проведена оценка времен жизни неосновных носителей тока. Показано, что преобладающим механизмом безызлучательной рекомбинации являются для n-InAs процесс с переносом избыточного электрона в зону проводимости (CHCC процесс) и процесс с участием дырки из спин-орбитально отщепленной зоны (CHSH–процесс) для p-InAs. Установлено, что основным механизмом излучательной рекомбинации является межзонная рекомбинация. Показано, что при высоких температурах T>300 K
и больших концентрациях
(n0, p0>1016 см-3) время жизни лимитировано безызлучательной Оже-рекомбинацией,
при этом преобладает процесс, обусловленный участием спин-орбитально отщепленной
зоны. При низких концентрациях преобладает излучательный механизм рекомбинации. Полученные результаты согласуются с данными теоретических работ [3,4]. Сравнительные значения температурной зависимости времен излучательной τR и безызлучательной τA рекомбинации представлены на рис. 1.
В данной главе приведены также расчеты произведения R0A (дифференциального сопротивления в нуле смещения R0 на площадь A диодной структуры)
в InAs p-n переходах с учетом различных механизмов протекания тока для резких
и плавных p-n переходов [A12] в зависимости от температуры и уровня легирования. Этот важный параметр позволяет прогнозировать эксплуатационные характеристики инфракрасных детекторов излучения [5].
Вторая глава диссертации посвящена исследованию фотоэлектрических свойств
и рекомбинационных процессов в твердых растворах InAs1-x-ySbxPy и диодных структурах на их основе. Эти материалы, наряду с InAs, важны для создания оптоэлектронных
приборов - светодиодов, лазеров, фотодиодов для средней ИК–области спектра 1,5–4 мкм [6]. Проведены экспериментальные исследования и расчет скоростей межзонной
и Оже-рекомбинации. Исследованы вольтамперные характеристики в диапазоне
температур 80–300 K для двух групп диодных структур InAsSbP с различной плотностью дислокаций. Изучены механизмы токопереноса в зависимости от температуры. Установлено, что при высоких температурах преобладает диффузионный механизм протекания темнового тока, а при низких – генерационно-рекомбинационный. Показано, что при
малых смещениях и низких температурах основной вклад вносят процессы туннелирования через промежуточные уровни
в запрещенной зоне. Проведены экспериментальные исследования фотопроводимости и фотомагнитного эффекта в интервале температур 80–295 K в кристаллах n- и
p-InAsSbP и определены времена жизни носителей, лежащие в интервале 2x10-7—3x10-9 с (рис.2)
и кинетика релаксации фотопроводимости. Из полученных совокупных данных показано, что в рекомбинационных процессах в твердых растворах p-InAsSbP необходимо учитывать захват неосновных носителей на глубокие центры Ef=0,13 эВ в запрещенной зоне.
В § 2.3 этой главы изучены электрофизические и фотоэлектрические свойства
диодных структур на основе InAsSbP, полученные методом ЖФЭ [A4–A10]. Исследованы вольтамперные характеристики и механизмы протекания тока в интервале температур
80–300 K с учетом рекомбинации в модели Саа–Нойса–Шокли [6]. Обнаружены 2 разных механизма прохождения тока в области низких и высоких температур, соответствующих рекомбинационному и диффузионному току [A6, A8].
Теоретические оценки межзонной излучательной и Оже-рекомбинации с вкладом прилипания и рекомбинации на глубоких центрах дают удовлетворительное согласие
с данными эксперимента во всем исследуемом температурном интервале. При комнатной температуре для всех образцов, как слабо–, так и сильнолегированных преобладающими являются процессы межзонной генерации–рекомбинации. При этом Оже-рекомбинация преобладает в образцах с p≈3x1017 см-3, а излучательная в образцах p ≈1016 см-3. Показано, что при низких температурах в механизм переноса носителей тока как при прямом,
так и при обратном смещении существенный вклад вносят туннельные процессы (Рис.3). Исследование спектральных характеристик фоточувствительности при различных температурах позволило определить ширину запрещенной зоны твердых растворов
InAs1-x-ySbxPy и ее температурную зависимость.
В § 2.4 описано определение диффузионных длин неосновных носителей
в p-InAsSbP. Для этого использовался метод расчета спектров фоточувствительности
согласно [7]. Диффузионные длины лежали в интервале Ln=1.6–2.8 мкм, что соответствует времени жизни электронов в p-слое τ =10-9-10-10 при 87 K.
Третья глава диссертации посвящена исследованиям электрических и фотоэлектрических характеристик диодов Шоттки на основе Au-p-InAs и Au–p(n)InP. В начале главы кратко рассмотрены параметры диодов Шоттки на основе полупроводников A3B5 по данным литературы [9, 10] (рис.3). Описана технология создания диодов Шоттки Au-p-InAs с использованием двух методов — электрохимического осаждения и напыления Au в вакууме. Изучены вольтамперные и вольемкостные характеристики таких структур
и спектральные характеристики фотоответа. Из этих данных определена высота барьера для диодов на основе слабо- и сильнолегированного p-InAs. Значение высоты барьера
изменялось от φB=0,44 эВ (T=77 K) до 0,25-0,27 эВ (T=230 K). Температурный коэффициент изменения высоты барьера ΔφB/ΔT=1,2x10-3 эВ/K оказался значительно больше,
чем коэффициент изменения ширины запрещенной зоны InAs (ΔEG/ΔT=2,8x10-4 эВ/K)., что связано, вероятно, с наличием инверсионного слоя на поверхности InAs [11]
и необходимостью туннелирования электронов через этот слой. В § 3.3 этой главы описано создание и исследование диодов Шоттки на основе InP n- и p-типа и изучены их
вольтамперные и вольтемкостные характеристики, а также спектральное распределение фотоэдс. Прямые ветви ВАХ показали высокое значение коэффициента неидеальности
n в соотношении I=IS(exp(q/nkT)-1), где ток насыщения IS=A**T2exp(-qφB/kT), A** - эффективная постоянная Ричардсона. Значение n менялось от n=2,0-2,2 до 2,7-2,8 для двух групп диодов без окисного слоя (A) и с промежуточным окисным слоем (B). Плотность поверхностных состояний для диодов групп A и B составляла 1x1012–7x1012 см2В-1, значения
высоты барьера для диодов на основе Au-n-InP по данным литературы лежат в интервале φB=0,40-0,53 эВ. Из данных, полученных по экстраполяции длинноволнового края
спектральной чувствительности по методу Фаулера [12] (рис. 4), высота барьера
для диодов групп A и B составила φB=0,65 эВ и 0,75 эВ, соответственно.
Расхождение с литературными данными обусловлено наличием промежуточных окисных слоев. Отметим,
что в диодах Шоттки Au-p-InP
с промежуточным слоем удалось снизить токи насыщения более чем на три порядка и увеличить высоту барьера, что представляет интерес для практического использования. В § 3.4 описаны также результаты исследования продольного фотоэффекта в таких структурах.
В четвертой главе основное внимание уделено электрическим и фотоэлектрическим свойствам диодных структур на основе InP, InGaAs и GaP с палладиевыми контактами. Использование Pd контактов оказалось важным, как показали наши дальнейшие исследования, для изучения влияния водорода на свойства изучаемых структур. В литературе имелись лишь отдельные ссылки на такие исследования [13]. В § 4.1 детально описана технология нанесения палладия на кристаллы n- и p-InP методом электрохимического осаждения и напыления
в вакууме. Особое внимание уделено наличию промежуточных окисных слоев In2O3
и P2O5 на границе раздела полупроводник - Pd, образующихся при электрохимическом способе создания диодных структур. Установлено, что в таких структурах ток определяется туннелированием электронов через промежуточный слой. Теоретически и экспериментально показано, что механизм переноса тока в структурах Pd–p–InP с напыленнным палладием может быть объяснен с привлечением модели двойной инжекции в диффузионном приближении [14], c учетом наличия глубоких уровней захвата дырок в запрещенной зоне [A11]. Об этом свидетельствовало наличие долговременных релаксаций
на вольтамперных характеристиках. Это приводит к изменению вида вольтемкостных
характеристик и объясняет неадекватную оценку высоты барьера Шоттки.
Значение высоты барьеров в структурах Pd-n-InP и Pd-p-InP, определенные
из измерений вольтамперных характеристик составили φB=0,54 0,74 эВ при T=300 K.
Из длинноволнового участка спектральной кривой фотоэдс по зависимости Vφ1/2=f(hν)
получено значение φB=0,79 эВ, что находится в хорошем согласии с данными [11].
Расхождение в значениях высоты барьера, определенной из ВФХ и фотоэлектрических характеристик может быть связано с наличием в слое объемного заряда большой плотности центров захвата для дырок, либо влиянием промежуточного слоя с высокой плотностью поверхностных состояний. Проведена оценка вклада обоих эффектов в определение φB из измерений зависимости емкости от напряжения, которая показала, что основной вклад в емкость того или другого эффекта зависит от величины обратного смещения.
Исследована зависимость фототока от обратного смещения в структурах Pd-p-p+-InP.
Проведен анализ и оценка времен жизни основных носителей τp и длин диффузионного смещения Lp. Получены значения τp=(2-7)·10-10 с и Lp=0,3-0,5 мкм.
В § 4.5 этой главы обсуждаются результаты исследования электрических свойств диодных структур на основе n-GaP с напыленным палладием. Показано, что токоперенос в таких структурах обусловлен двойной инжекцией носителей в компенсированную
область, созданную дефектными состояниями акцепторного типа, образующих глубокие центры захвата для дырок. Характерными для исследованных структур явилась слабая фоточувствительность.
Пятая глава диссертации посвящена изучению влияния газообразного водорода на электрические и фотоэлектрические свойства диодных структур палладий-полупроводник на примере систем на основе InP. В начале главы приведен краткий обзор работ по созданию сенсоров для детектирования водорода. Такие сенсоры нужны
для регистрации утечек водорода при его хранении, транспортировке, использовании
в топливных элементах, химических и других индустриальных объектах.
Как следует из данных литературы, приведенных в обзоре [2], предлагаемые опытные образцы детекторов H2 основаны главным образом на использовании структур
с диодами Шоттки, транзисторов, МДП–структур на основе окислов TiO2, ZnO, WO3, SnO2, CdO. Важнейшим элементом таких детекторов является палладиевый или платиновый контакт. В основе описанных в литературе методов регистрации водорода и водородосодержащих газов, как правило, используется изменение электрических характеристик при приложении соответствующего напряжения (емкости, сопротивления или порогового напряжения транзистора) [2].
Б
ольшинство предлагаемых сенсоров водорода работает при высоких температурах (400 –800 C) и требует приложения напряжения. Проведенные исследования показали, что нет однозначной интерпретации изменения электрических свойств в атмосфере водорода и других газов, что затрудняет создание эффективного сенсора водорода. На основе проведенных нами исследований впервые был предложен новый способ детектирования
и измерения концентрации водорода и водородосодержащих соединений в газовой смеси, а именно с использованием фотоэффекта [A13].
В § 5.1 описано наблюдаемое нами изменение электрических и фотоэлектрических характеристик диодных структур Pd-n(p)InP в атмосфере водорода.
а б
Рис.5. Вольтамперные характеристики структуры Pd - p-InP (а) и Pd - n-InP (б). 1-прямая ветвь без H2, 2-прямая ветвь H2=0,03%, 3-обратная ветвь без H2, 4-обратная ветвь H2=0,03%.
На рис.5 представлены прямые и обратные ветви вольтамперных характеристик структур Pd-p-InP и Pd-n-InP при воздействии воздушной смеси с содержанием 0,03 % H2. Как видно из рис 5., наблюдается некоторое увеличение прямого и обратного токов
в атмосфере H2 при приложении смещения ~0,5 В.
Было исследовано влияние водорода на фотоэдс диодных структур Pd-n-InP
с электрохимически осажденным металлом в воздухе
и в газовой смеси с 0,03 % H2 (рис. 6). При этом обнаружено резкое падение фотоэдс, почти на 2 порядка величины.
В структурах на основе p-InP
с напыленным Pd чувствительность по фотоэффекту на порядок превышает изменение параметра, определяемого изменением тока при воздействии водорода. Для выяснения физических причин изменения темнового тока и фотоэдс были рассмотрены особенности используемых структур, включая механизм образования
и состав промежуточного слоя на основе InP. Было отмечено влияние окисного слоя P2O5
в структурах, полученных электрохимическим способом. Фотоответ таких структур сильно зависел от влажности. В то же время в образцах диодных структур, полученных напылением Pd, фотоэдс от влажности не зависела.
Рассмотрен процесс протекания тока и генерации фотоэдс в структурах с промежуточным (диэлектрическим) слоем. Анализ показывает, что общий ток является суммой электронного, дырочного тока и тока из поверхностных состояний на интерфейсе. Была оценена плотность поверхностных состояний на границе раздела. Показано, что изменение фотоэдс в атмосфере водорода определяется совокупностью следующих факторов:
a) высотой барьера Шоттки φB и его изменением; б) высотой туннельного барьера полупроводник-диэлектрик или коэффициентом прозрачности, в) величиной фототока,
г) коэффициентом неидеальности n, и, наконец, плотностью поверхностных состояний
на интерфейсе. Главным фактором, влияющим на величину фототока в присутствии водорода, является изменение высоты барьера Шоттки. Падает фототок Isc, определяемый неосновными носителями (дырками в p-InP).
В § 5.4 рассмотрено влияние водорода на электрические характеристики и фотоэдс гибридных структур на основе Pd-InP-InGaAs.
Спектр фотоэдс такой структуры приведен на рис. 7. Наличие двух максимумов λ=0,9 мкм и 1,55 мкм связано с межзонными переходами
в InGaAs и переходами на гетерогранице p-InP-p-InGaAs. Основное изменение фотоэдс приходится на область фотоответа диода Шоттки Pd-InP.
В газовой смеси с водородом (500 ppm H2) фотоэдс возрастает в 2 раза. Возрастание фотоэдс практически безынерционно, спад достигает ~3 мин. Процесс релаксации связан
с выделением H2. В исследуемой изотипной гибридной структуре наблюдался также эффект усиления фототока при обратном смещении и его температурная зависимость.
Коэффициенты усиления достигали при низких температурах (77 K) M~4x103,
a при близких к комнатным – M~200 (рис. 8).
Этот эффект связан с влиянием модуляции высоты барьера
гетерограницы в области объемного заряда в InGaAs на величину проводимости и температурным изменениям фототока без смещения.
Отмечено, что гибридная структура Pd-p-InP-InGaAs
перспективна для создания детектора двойного назначения: ближнего ИК–излучения (0,7—1,7 мкм) и водорода.
Изучен механизм протекания тока в диодных структурах с окисными слоями
p-InP-n-In2O3-P2O5-Pd. Обнаружено влияние водорода на фотоэдс, обусловленное
поглощением молекул H2O в окисле P2O5. В исследуемых структурах наблюдалась сильная зависимость фотоэдс от влажности. Можно предположить, что фосфорный окисел P2O5 в промежуточном слое, поглощая пары влаги, создает дополнительные центры перезарядки. Это может увеличивать высоту барьера и уменьшать плотность поверхностных состояний.
Такая структура может быть использована как детектор тройного назначения – ближнего ИК-излучения (до 1,55 мкм), водорода и влажности.
Шестая глава диссертации посвящена исследованию электрических и фотоэлектрических свойств диодных и МДП-структур на основе Si-SiO2 с палладиевыми контактами и влиянию на них водорода. В ряде работ, посвященных туннельным МДП–структурам на основе Si, теоретически и экспериментально были исследованы механизмы протекания тока, фототока и физические процессы, происходящие на границе раздела
металл–SiO2-Si. [16а, б, 17, 18]. Однако до начала настоящей работы фактически
не проводились исследования электрических и фотоэлектрических явлений в таких структурах с палладиевыми контактами.
В рамках данной работы были изучены токоперенос, фотовольтаическая и фотодиодная чувствительность туннельных структур Pd-SiO2-n(p)Si, а также электрические
и фотоэлектрические характеристики диодных структур на основе пористого кремния
и влияние на них водорода.
МДП-структуры создавались на кристаллах n-Si с ориентацией (111) и p-Si (100). Палладий наносился напылением в вакууме, и толщина слоев составляла 400–500 Å.
В структурах
Pd-SiO2-n(p)Si с тонким
слоем диэлектрика обнаружено усиление фототока при обратном смещении.
На рис. 9 представлены зависимости фототока от обратного смещения для МДП-диодов на основе n и p-Si. Кривые сняты при освещении монохромати-ческим светом с λ=0,9 мкм. Величина умножения фототока в структурах на основе Pd-SiO2-n-Si составляла почти 2 порядка,
а в структурах на основе p-Si на порядок меньше. Согласно [18] механизм умножения тока или фототока определяется сильной инверсией у границы с окислом, управляемой неосновными носителями и приводящей к созданию сильного электрического поля (E=9x106 В/см) в области пространственного заряда, что усиливает туннельный ток между металлом и полупроводником. В структурах Pd-SiO2-p-Si с толстым слоем диэлектрика наблюдалось заметное усиление фототока, достигающее M=102-103, который мог быть описан известным для фотосопротивления соотношением для коэффициента усиления фототока G=(τnMn+τpMp)V/L2, когда времена жизни электронов и дырок τn и τp превышают времена пролета между инжектирующими контактами [19].
Было изучено влияние водорода на фотоответ в фотовольтаическом и фотодиодном режимах для МДП-структур на основе n- и p-Si. Влияние газовой среды с водородом
на фототок и темновой ток в структурах Pd-SiO2-n(p)Si с толстым слоем диэлектрика
оказалось слабым, что свидетельствует о том, что в этом случае действие водорода связано не с изменением параметров границы раздела Pd-SiO2, а с процессами в объеме слоев структуры.
В § 6.3 подробно исследовано влияние водорода
на фотоэлектрические свойства туннельных структур
Pd-SiO2-n(p)Si без приложенного напряжения (в режиме фотоэдс) и со смещением. На рис. 10 показана зависимость фототока от обратного смещения для двух образцов туннельных структур без воздействия водорода (1,2) и при импульсном воздействии H2 (3,4). В фотовольтаическом режиме чувствительность структур на основе n-Si выше, чем на основе
p-Si. В фотодиодном режиме чувствительность также возрастает за счет вклада умножения носителей. Однако недостатком этого метода детектирования водорода в практическом отношении является необходимость приложения обратного смещения.
В § 6.4 и 6.5 обсуждаются результаты экспериментов по исследованию влияния
водорода на электрические и фотоэлектрические характеристики структур на основе
пористого кремния, в том числе содержащих разупорядоченные слои p0-Si. При воздействии водорода на такие структуры фотосигнал возрастал в 20 раз. Однако в отличие
от структур Pd-SiO2-p-Si наблюдаются долговременные релаксации, достигающие
180-600 с. Наличие разупорядоченного пористого слоя Si вносит дополнительные
глубокие центры захвата, что увеличивает время релаксации фототока после воздействия газообразного водорода.
В структурах на основе пористого кремния p-porSi были изучены вольтамперные характеристики и механизмы токопереноса, обусловленного токами, ограниченными обычным зарядом. Важная роль глубоких ловушек выявлена при исследовании процессов релаксации темнового тока и фототока при обратном смещении. Слои пористого p-Si толщиной 50 мкм были получены при изменении режима электрохимического травления. Палладий осаждался на пористый слой в виде круглых контактов, и его толщина
была ~400 Å. Технология создания структур описана, например, в [20] и в [A38].
На рис. 11 приведена температурная зависимость фототока короткого замыкания изученных диодных структур в интервале 110-300 K. Фототок определяется разделением неосновных носителей на барьере
Шоттки pd-p-porSi. Изменение фототока
отражает изменение времени жизни неосновных носителей с температурой.
Из наклона кривой температурной зависимости фототока был определен рекомбинационный уровень Er=0,12 эВ. Слои n-porSi
изготавливались путем анодирования поверхности. Показано, что механизм
токопереноса определяется двойной инжекцией носителей в пористый слой; инжекцией электронов из подложки n-Si через гетерограницу Si/porSi и дырок через барьер Шоттки Pd-porSi. Спектральные характеристики, как фотоэдс, так и фототока, не обнаруживают
в коротковолновой части спектра особенностей, соответствующих широкозонному porSi, как это наблюдалось в [20]. Полученные данные по влиянию газообразного водорода
на фотоэдс и вольтамперные характеристики показывают, что изменение этих характеристик сопоставимо по величине с соответствующими изменениями в описанных ранее структурах на основе кристаллического Si. Однако времена релаксации, как фотоэдс,
так и темновых токов велики и составляют порядка 15 мин, что связано с большой
концентрацией центров захвата в porSi. Это снижает перспективность использования
изученных структур в качестве сенсоров газообразного водорода, однако, они могут быть
использованы в микротопливных элементах на основе пористого кремния для накопления водорода или устройствах памяти.
В конце главы 6 в § 6.7 обсуждаются особенности механизма протекания тока
и фотоэлектрические свойства диодных структур n+–Si–n–Si–Al2O3–Pd с промежуточным окисным слоем. Установлено,
что перенос носителей обусловлен также двойной инжекцией носителей в слой n-Si: инжекцией электронов со стороны n-n+ контакта и дырок со стороны Pd, при этом
основную роль играет диффузия. Фотоэдс исследуемых структур с промежуточным слоем Al2O3 была выше на порядок в максимуме спектра, чем в структурах без этого слоя (рис. 12). Фотоэдс уменьшалась под действием H2 в 2-10 раз, а время релаксации достигало 5-10 мин, что связано с наличием глубоких ловушек в слое Al2O3 и на гетерогранице Al2O3-n-Si. Отметим, что на основе этой структуры нами был создан сенсор сероводорода, описанный в главе 7.
Седьмая глава диссертации посвящена практическому применению результатов проведенных исследований для создания нового типа сенсоров водорода и водородосодержащих газов, а также оптоэлектронных сенсоров для задач экологии на основе гетероструктур и диодов Шоттки в полупроводниках A3B5 и кремния [A49, A52].
В начале главы дан краткий обзор существующих сенсоров водорода. Такие исследования ведутся в США, Германии, Англии, Японии, Китае, Испании, России, Армении, Турции и др. Основным способом детектирования в таких сенсорах является регистрация изменения электрических параметров [2] в присутствии водорода (изменение проводимости, или емкости чувствительного элемента). Как уже отмечалось, основными недостатками таких приборов являются необходимость нагрева (рабочие температуры 200-800 C), приложение электрического смещения, высокая стоимость и низкая чувствительность.
В настоящее время ряд фирм выпускает сенсоры на основе полевых транзисторов
и диодов Шоттки с палладиевым слоем [см., например, 21]. Такие приборы могут работать при комнатной температуре с достаточно хорошим быстродействием, но чувствительность увеличивается при нагревании.
В главах 5 и 6 нами было детально рассмотрено влияние водорода на электрические и фотоэлектрические характеристики целого ряда гетеро– и гибридных структур
на основе InP, InGaAs и Si-SiO2 с палладиевыми контактами: Pd-n(p)InP, Pd-p-InP-InGaAs, Pd-P2O5-n-In2O3-p-InP, Pd-SiO2-n-Si, Pd-SiO2-p-Si, Pd-p0-Si, Pd-porSi, Pd-n-GaP,
Pd-Al2O3-n-Si [A13, A14, A17, A19-A27, A33, A35-37]. Оказалось, что для всех этих структур наблюдается общая закономерность: изменение фотоэдс в газовой смеси с водородом на порядок больше, чем изменение вольтамперных характеристик. Было показано,
что эти структуры могут быть использованы в качестве фотовольтаических детекторов водорода и водородосодержащих газов, а, ряде случаев, как детекторы двойного и тройного назначения (ближнего ИК–излучения и водорода, а также влажности).
Обсуждены требования к структурам Pd-полупроводник для достижения максимальной чувствительности к водороду. Проведены предварительные исследования влияния водорода на гетероструктуры I и II типа на основе узкозонных полупроводников
InGaAsSb/InP, GaInAsSb/GaSb и InAsSbP/InAs. Представлялось интересным использование разъединенных гетеропереходов II типа [A49, A50] на основе InAs-GaSb(GaInAsSb), которые являются аналогами диодов Шоттки [20]. В § 7.3 рассмотрены экспериментальные результаты по детектированию водорода с использованием структуры Pd-SiO2-n(p)Si с туннельно–тонким слоем SiO2.
На рис. 13 представлены спектральные зависимости фотоэдс для
Pd-SiO2-n(p)Si структур без водорода и при воздействии импульса H2. Для Si МДП фотодетекторов наблюдались резкое (на 2-3 порядка)
падение фотоэдс, а для
p-Si структур увеличение
на 2 порядка. Показано,
что определяющий вклад
в изменение фотоэдс вносит изменение высоты барьера, φB. Высота барьера в структурах на основе n-Si падает на Δφ≈0,45 эВ, а на основе p-Si увеличивается на 0,35 эВ.
Эти изменения связываются с наличием заряженных диполей на интерфейсе Si-МДП структур. С помощью этой структуры нами были измерены малые концентрации водорода (менее 0,01 ppm H2).
В § 7.4 описана созданная нами оригинальная структура Al-n-Si-SnO2 [A48], которая показала свою перспективность для регистрации сероводорода H2S (Рис. 14).
В
Рис.15 Миниатюрный сенсор водорода на основе оптопары светодиод-фотоэлектрический элемент Pd-InP.
§ 7.5 описан предложенный
и реализованный экспериментальный
образец миниатюрного сенсорного модуля для измерения концентрации водорода
и водородосодержащих газов на основе
оптопары: светодиод – фотоэлектрический сенсорный элемент (Рис.15). Такие сенсоры, благодаря использованию импульсного режима в сочетании с синхронным усилением сигнала позволяют существенно улучшить отношение сигнал/шум и снизить энергопотребление. В этой главе описаны также портативные оптоэлектронные сенсоры светодиод–фотодиод, используемые в газоанализаторах метана, разработанные нами совместно
с сотрудниками лаборатории ИК оптоэлектроники ФТИ им. А.Ф. Иоффе [A51].
В § 7.8 представлен также предложенный и созданный нами оригинальный
оптоэлектронный сенсор для определения содержания воды в сырой нефти [A52].
Был создан набор светодиодов на основе гетероструктур в системе GaSb-InAs и исследовано влияние поглощения воды (рис.16) и углеводородов на излучение светодиодов.
В окончательном варианте сенсора содержания воды в сырой нефти были использованы три светодиода с максимумами излучения на 1,65 мкм, 1,92 мкм и 2,7 мкм. Такой сенсор может измерять содержание влаги в нефти в диапазоне концентраций от 0 до 100%
с учетом негомогенности среды. Экспериментальный сенсор был разработан совместно
с ООО «АИБИ» при Физико-Техническом институте им. А.Ф. Иоффе, и прошел успешное тестирование в ОАО «ТАТНЕФТЬ» на участках первичной переработки нефти.
200>