Исследование экологического статуса систем «почва-растение» степной зоны при антропогенном воздействии

Вид материалаИсследование

Содержание


Научный консультант
Официальные оппоненты
Караваев Владимир Александрович
Общая характеристика работы
Цель и задачи исследований.
Объектом исследований
Научная новизна
Практическая значимость результатов.
Связь темы диссертации с плановыми исследованиями.
Достоверность результатов
Реализация результатов исследований
Апробация работы.
Декларация личного участия автора.
Объем и структура работы.
Основные положения, выносимые автором на защиту
Основное содержание работы
ГЛАВА 1. Анализ проблемы загрязнения окружающей среды гербицидами и тяжелыми металлами.
ГЛАВА 2. Биофизические основы фотосинтетического аппарата растений.
ГЛАВА 3. Механизм поглощения и миграции энергии в хлоропластах и кинетика люминесценции.
ГЛАВА 4. Технические средства регистрации замедленной флуоресценции.
...
Полное содержание
Подобный материал:
  1   2   3


На правах рукописи


ЕФРЕМОВ ИГОРЬ ВЛАДИМИРОВИЧ


Исследование экологического статуса

систем «почва-растение» степной зоны

при антропогенном воздействии


Специальности 03.02.08 – экология (биология)

03.01.02 – биофизика


АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора биологических наук


Тольятти – 2011


Работа выполнена на кафедре безопасности жизнедеятельности

Оренбургского государственного университета



Научный консультант:

доктор физико-математических наук, профессор

Твердислов Всеволод Александрович



Официальные оппоненты:


доктор физико-математических наук, доктор биологических наук, профессор

Еськов Валерий Матвеевич


доктор физико-математических наук, профессор

Караваев Владимир Александрович


доктор биологических наук

Шитиков Владимир Кириллович



Ведущая организация:

Институт степи Уральского

Научного центра РАН (г. Оренбург)



Защита состоится 22 февраля 2011 года в 1000 часов на заседании диссертационного совета Д 002.251.01 при Институте экологии Волжского бассейна РАН по адресу: 445003, Самарская обл., г. Тольятти, ул. Комзина, 10.

Тел.: (8482)48-99-77; факс: (8482) 48-95-04; E-mail: ievbras2005@mail.ru


С диссертацией можно ознакомиться в научной библиотеке Института экологии Волжского бассейна РАН, с авторефератом – в сети Интернет на сайте ВАК по адресу: www.vak.ed.gov.ru.


Автореферат разослан «____» ____________________ 2010 г.


Ученый секретарь

диссертационного совета,

кандидат биологических наук А.Л. Маленев


ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Развитие промышленности и сельского хозяйства приводит к увеличению антропогенной нагрузки на почвенно-растительные комплексы.

В частности, рост производства в тяжелом машиностроении и сельском хозяйстве способствует увеличению содержания тяжелых металлов и гербицидов в объектах природной среды. В связи с этим является актуальным развитие методов мониторинга состояния почвенно-растительных систем. Значительное место среди современных физических методов мониторинга занимают оптические методы, в том числе, методы регистрации замедленной флуоресценции (ЗФ) почв и растительности.

В настоящее время, благодаря работам российских и зарубежных исследователей процесс фотосинтеза изучен достаточно полно. Вместе с тем, представляет значительный интерес исследование влияния различных факторов окружающей среды на процессы фотосинтеза. Одним из методов позволяющих оценивать состояния фотосинтетического аппарата растений, является метод регистрации замедленной флуоресценции. Другим направлением является исследование кинетики флуоресценции почв при различных воздействиях (в том числе температурных). Рассматривая параметры кинетики замедленной флуоресценции как пространство состояний почвенно-растительных систем, можно оценивать и прогнозировать ранние изменения в почвенно-растительных системах при внешних воздействиях факторов окружающей среды.

Цель и задачи исследований. Целью настоящего исследования является разработка концептуальных основ применения параметров кинетики замедленной флуоресценции для мониторинга антропогенного изменения систем почва-растение степной зоны под действием факторов окружающей среды и моделирование экологического риска загрязнения биогеоценозов.

Для достижения поставленной цели предполагается решение следующих задач:

- анализ методов и средств мониторинга почвенно-растительных систем и контроля воздействия факторов окружающей среды (на примере действия гербицидов и тяжелых металлов);

- разработка методики и исследование кинетики замедленной флуоресценции растений степной зоны при действии фосфорорганических гербицидов и тяжелых металлов;

- разработка методики и исследование кинетики замедленной флуоресценции почв при различных температурах;

- исследование кинетики замедленной флуоресценции растений степной зоны в зависимости от физико-химических свойств почв;

- моделирование влияния физико-химических свойств почв на состояние фотосинтетического аппарата растений степной зоны с применением алгоритма самоорганизации;

- моделирование процессов миграции тяжелых металлов и оценка риска загрязнения систем почва-растение степной зоны;

- теоретическое обоснование интегрального показателя миграционной способности систем почва-растение степной зоны.

Объектом исследований являются системы почва-растение степной зоны Оренбургской области.

Предметом исследований являются физико-химические процессы в системе почва-растение при воздействии факторов окружающей среды.

Научная новизна работы состоит в следующем:

- разработано устройство регистрации замедленной флуоресценции хлорофилла;

- предложены и экспериментально проверены методики экологической оценки влияния фосфорорганических гербицидов и тяжелых металлов на растения степной зоны, получены математические зависимости параметров кинетики замедленной флуоресценции от концентрации и продолжительности действия фосфорорганического гербицида и солей тяжелых металлов;

- разработана математическая модель влияния физико-химических свойств почв на параметры кинетики замедленной флуоресценции растений степной зоны и модель оценки риска загрязнения почвенно-растительных систем тяжелыми металлами, теоретически обоснован интегральный показатель, характеризующий загрязнение биогеоценозов.

- обнаружена замедленная флуоресценция почв, предложена и экспериментально проверена методика регистрации замедленной флуоресценции почв при различных температурах воздействия, получены математические зависимости параметров кинетики замедленной флуоресценции почв от температуры обработки, определена динамика физико-химических свойств почв при различных температурах.

Практическая значимость результатов. Применение устройства, разработанного для регистрации замедленной флуоресценции (патент RU № 2220413), позволяет развивать методологию ранней диагностики состояния фотосинтетического аппарата растений степной зоны в зависимости от факторов окружающей среды. Регистрация ЗФ почв позволяет оценить изменение физико-химических свойств почв при различных температурах.

Предложенная математическая модель позволяет оценивать изменение фотосинтетической активности растений в зависимости от физико-химических свойств почв. Моделирование процессов в системах почва-растение на основе детерминистско-вероятностного подхода позволяет оценить риск загрязнения почвенно-растительных систем тяжелыми металлами. Предложенный интегральный показатель позволяет оценивать миграционные свойства тяжелых металлов в системах почва-растение.

Разработаны принципы классификации (на основе кластерного анализа) видов и сортов растений по ответной реакции фотосинтетического аппарата на действие факторов окружающей среды (тяжелых металлов и гербицидов).

Связь темы диссертации с плановыми исследованиями. Исследования по данной тематике проводились в рамках госбюджетных работ по зарегистрированным направлениям ГР 019990003773 «Исследование влияния выбросов газоперерабатывающего завода на процессы клеточного метаболизма растений», ГР 019990003741 «Прогнозирование воздействия ЧС предприятий нефтегазового комплекса на почвенно-растительные системы».

Достоверность результатов основывается на выборе адекватных физических моделей кинетики замедленной флуоресценции, использовании известных и опробованных математических методах обработки данных. Достоверность экспериментальных данных подтверждается результатами, полученными другими авторами, для аналогичных объектов традиционными химическими и биологическими методами.

Реализация результатов исследований осуществляется путем использования разработанного устройства регистрации замедленной флуоресценции, методики экологической оценки влияния фосфорорганических гербицидов и тяжелых металлов на растительные организмы для получения информации о механизмах действия новых препаратов, внедряемых в практику сельского хозяйства, а также, для тестирования на сохранение действующего вещества при длительном хранении гербицидов Государственным центром агрохимической службы «Оренбургский».

Разработанные автором методики используются при оценке антропогенного воздействия окружающей среды на фотосинтетический аппарат растений, расчете риска загрязнения систем почва-растение тяжелыми металлами. Материалы работы доложены и обсуждены на расширенном заседании кафедр «Безопасности жизнедеятельности», «Экологии и природопользования», «Информационной биофизики» Оренбургского государственного университета.

Результаты используются также для оценочных расчетов возможной динамики фотосинтетического аппарата при изменении химических показателей почв. Также, результаты реализованы в методике оценки риска загрязнения почвенно-растительных систем тяжелыми металлами.

Результаты исследований используются в Государственном образовательном учреждении высшего профессионального образования «Оренбургский государственный университет» при чтении лекций и проведении практических занятий для студентов специальности 280101.65 – «Безопасность жизнедеятельности в техносфере», а также дисциплины «Системы защиты среды обитания», «Физиология растений», «Мониторинг среды обитания» для студентов специальности «Экология».

Апробация работы. Материалы диссертации докладывались на III съезде биофизиков, г. Воронеж (2004г); Всероссийской научно-практической конференции «Проблемы геологии, охраны окружающей среды и управление качеством экосистем», Оренбург (2006); международной научно-практической конференции «Биоэлементы»(2004); II-ой международной научно-практической конференции «Состояние биосферы и здоровье людей», Пенза (2002г); Российской научно-технической конференции «Обеспечение продовольственной и экологической безопасности человечества – важнейшая задача XXI века», Оренбург 2000 г. Результаты и методики представлялись на выставках и конкурсах: Экотехнология - 99, Экотехнология - 2007, выставках НТТМ-2003, 2004 гг. Материалы работ получили совместный грант РГНФ и администрации Оренбургской области в 2008 г.

Декларация личного участия автора. Выбор и обоснование научной тематики исследования, разработка экспериментальной установки, получение экспериментальных и теоретических результатов, их анализ и интерпретация, как и основные публикации, сделаны при решающем участии автора.

Публикации. По результатам исследований опубликовано более 80 работ: 11 статей в рецензируемых научных журналах по списку ВАК (3 статьи в печати), издана монография, получены пять патентов, в том числе 2 патента по теме диссертации, статьи в других журналах и сборниках – 10, в материалах конференций - 65.

Объем и структура работы. Диссертационная работа состоит из введения, восьми глав, заключения, списка используемой литературы из 243 наименований. Общий объем диссертации составляет 341 страницу машинописного текста, 73 рисунка, 38 таблиц.

Основные положения, выносимые автором на защиту:

1. Методологический подход к оценке влияния факторов внешней среды, основанный на регистрации параметров кинетики замедленной флуоресценции почвенно-растительных систем, основанный на представлении кинетических кривых замедленной флуоресценции в виде суммы экспонент, характеризующихся своими параметрами: максимальным значением и постоянной данной компоненты;

2. Математическая модель расчета параметров кинетики замедленной флуоресценции растительных организмов (а, следовательно, и состояния фотосинтетического аппарата растений), учитывающая физико-химические показатели почв;

3. Математическая модель расчета риска загрязнения почвенно-растительных систем тяжелыми металлами, основанная на применении теории марковских цепей к почвенно-растительным процессам;

4. Интегральный показатель оценки миграционной способности тяжелых металлов в системах почва-растение.


ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ


Во введении рассматривается актуальность темы диссертации, сформулированы цели, задачи, теоретическая и практическая значимость, научная новизна работы.

ГЛАВА 1. Анализ проблемы загрязнения окружающей среды гербицидами и тяжелыми металлами. В главе рассмотрена характеристика почвенно-растительных ландшафтов Оренбургской области, антропогенное загрязнение почвенно-растительных систем тяжелыми металлами и гербицидами. Проведен анализ существующих методов экологического мониторинга и аналитического контроля загрязнения гербицидами и тяжелыми металлами, предложена классификация методов мониторинга. Рассмотрены вопросы применения замедленной флуоресценции для исследования влияния факторов окружающей среды на почвенно-растительные системы.

Важное значение в проведении экологического мониторинга имеет получение экспресс-информации состояния клеток организмов в результате различных внешних воздействий. Современные биофизические методы экспресс-диагностики состояния клеток основаны на регистрации начальных нарушений клеточного метаболизма в основном на мембранном уровне организации клетки. Среди спектральных и люминесцентных методов следует отметить метод регистрации замедленной флуоресценции хлорофилла. Тесная связь этого явления с работой фотосинтетического аппарата и важная роль последнего в жизнедеятельности растения позволили использовать это излучение для анализа приспособительных реакций растения и оценки его устойчивости к неблагоприятным факторам среды.

ГЛАВА 2. Биофизические основы фотосинтетического аппарата растений. Во второй главе рассмотрены биофизические основы применения метода регистрации замедленной флуоресценции для экологической оценки влияния факторов окружающей среды на фотосинтетический аппарат растений, механизмы поглощения и миграции энергии в хлоропластах, рассмотрены механизмы действия гербицидов и тяжелых металлов на растительные организмы.

В работающем фотосинтетическом аппарате сразу после выключения освещения (что необходимо для регистрации ЗФ) имеется весь набор состояний реакционного центра (РЦ) по степени разделения зарядов. Кинетика затухания свечения в темноте зависит как от прямых реакций использования разделенных зарядов в фотосинтетическом процессе (переход к более стабильным состояниям), так и от обратных переносов зарядов, приводящих к появлению в РЦ заряженной пары Р+680Фф- .

По характеристикам замедленной флуоресценции можно судить об активности фотосинтетического аппарата целого растения, наблюдать его реакции на факторы окружающей среды. Параметры ЗФ очень чувствительны к изменению практически всех реакций фотосинтеза, таких, как транспорт электронов в темновых фазах фотосинтеза, протонная проводимость тилакоидной мембраны, фотофосфорилирование, активность реакционных центров и др. Интенсивность ЗФ пропорциональна больцмановскому фактору, концентрации пары Р+680Фф-, «частотному фактору». Даже небольшие сдвиги в функционировании растений при изменении внешних условий отражаются на течении фотосинтетических реакций, что одновременно проявляется и в изменении параметров ЗФ.

Далее рассмотрены механизмы действия тяжелых металлов и гербицидов на растения. За последние годы накоплено большое количество информации относительно цитологического, физиологического, биохимического и молекулярного аспектов действия гербицидов на различные системы растения, что дает возможность ответить на вопрос о механизме действия гербицидов и тяжелых металлов.

Гербициды могут вмешиваться во все процессы, имеющие отношение к метаболизму и росту растения. Экспериментально показано, что процессы метаболизма, специфические для растительных тканей, представляют большую часть известных сайтов гербицидного действия, например фотосинтез, синтез каротиноидов, специфическая регуляторная система и т.д. В работе рассмотрено действие фосфорорганического гербицида раундап (глифосат). Данный препарат, широко используемый в сельском хозяйстве в настоящее время, является наиболее характерным представителем класса фосфорорганических гербицидов. Известно, что раундап индуцирует хлороз. Подобно индуцирующим хлороз гербицидам, он подавляет образование рибосом и РНК в хлоропластах, формирование гран и биосинтез пигментов.

Тяжелые металлы, начиная с определенной концентрации, тормозят процессы фотосинтеза и уменьшают транспирацию растений. В настоящее время вопросы, связанные с понятием токсичности и толерантности растения по отношению к какому-либо загрязнителю, еще не до конца решены и нуждаются в дальнейшем комплексном изучении.

ГЛАВА 3. Механизм поглощения и миграции энергии в хлоропластах и кинетика люминесценции. В главе рассмотрены вопросы кинетики люминесценции сложных молекулярных систем. Рассмотрим изменение населенности уровня энергии после прекращения возбуждения. Изменение числа частиц за время от t до t+dt определяется в рамках вероятностного метода формулой

(1)

где Аij и dij – вероятности спонтанных и неоптических переходов i→j.

Интегрируя (1) с учетом начальных условий, получим

(2)

Населенность i-го уровня экспоненциально убывает со временем и при t→∞ стремиться к нулю. Скорость убывания характеризуется длительностью возбужденного состояния - τ. Включение неоптических переходов, т.е. тушения люминесценции, приводит к сокращению длительности. Изменение населенности уровней в рамках вероятностного метода можно найти из системы уравнений

(3)

Здесь m – общее число уровней энергии частиц, строго говоря, равное бесконечности, а p-вероятности переходов электронов между уровнями. Значение Δni для одних уровней положительны, для других отрицательны.

Решение (3) имеет вид

(4)

Здесь λ1, λ2, …, λm-1 – постоянные, зависящие только от свойств системы частиц и температуры (от вероятностей pij, т.е. от Aij, dij и Т); Dki – постоянные, зависящие, кроме, того, и от начальных условий, т.е. от способа возбуждения. Общее число постоянных λк равно (m-1). Они могут быть комплексными, причем их вещественная часть всегда положительна, так как при t→∞ Δni0.

Из формулы (4) следует, что изменение населенности уровней при приближении к равновесию (после прекращения возбуждения) происходит по сложному, отнюдь не экспоненциальному закону. Для многих уровней значения Δni могут не только уменьшаться, но и увеличиваться, много раз проходя через нуль при комплексных значениях λ.

В работе показано, что экспоненциальный закон изменения числа возбужденных частиц и, следовательно, экспоненциальный закон затухания люминесценции могут наблюдаться у таких систем, для которых характерно быстрое перераспределение частиц по различным подуровням возбужденного состояния.

ГЛАВА 4. Технические средства регистрации замедленной флуоресценции. В главе проведен анализ существующих аппаратных средств регистрации замедленной флуоресценции, приведена конструкция разработанной автором установки регистрации кинетики замедленной флуоресценции. Возможность определения тех или иных параметров фотосинтетического аппарата определяется особенностями используемого метода возбуждения и регистрации флуоресценции.

Для регистрации замедленной флуоресценции растений автором разработано высокочувствительное устройство на основе электронных блоков системы «Вектор» (патент 2220413 (13) С1 2003 г., авторы: Ефремов И.В., Межуева Л.В., Быкова Л.А., ОГУ), работающее в импульсном режиме.

На рисунке 1 (а) показана блок-схема устройства для регистрации замедленной флуоресценции. Устройство работает следующим образом: исследуемый объект (лист растения, почва) помещают в кювету, выполненную из светопроводящего материала и расположенную в емкости для исследуемого объекта 7, выдерживают в темноте необходимое время. Измерения начинают нажатием кнопки пуск блока управления 8. При этом, в течение заданного времени подается импульс напряжения на светодиоды и происходит засветка объекта. Одновременно с блока управления подается запирающее напряжение на первый динод фотоэлектронного умножителя 6. Установка работает в режиме счета импульсов.




а б

Рисунок 1. (а) блок-схема устройства для регистрации замедленной флуоресценции; (б) форма импульсов измерительного тракта.

1 – блок питания предварительного усилителя; 2 – высоковольтный блок питания 3 – усилитель импульсов БУС 2-95; 4 – пересчетное устройство ПСО; 5 –предварительный усилитель; 6 – фотоэлектронный умножитель с источником света; 7 – объект; 8 – блок управления установкой.

Форма импульсов приведена на рисунке 1 (б). После снижения напряжения на светодиодах до нуля, с блока управления подается импульс на запуск пересчетного устройства и одновременно снимается запирающее напряжение фотоэлектронного умножителя. Пересчетное устройство при этом начинает счет числа импульсов, поступающих с ФЭУ. Измерение происходит до снижения числа импульсов до фонового уровня.

Использование данного устройства позволяет совершенствовать флуоресцентные методы и аппаратуру для биомониторинга загрязнения объектов окружающей среды различными токсикантами.