Методические рекомендации по оценке эффективности инвестиционных проектов (Вторая редакция, исправленная и дополненная)

Вид материалаМетодические рекомендации
Обоснование и общий вид формул для коэффициентов распределения.
Учет изменений нормы дисконта во времени
Подобный материал:
1   ...   40   41   42   43   44   45   46   47   ...   62

Обоснование и общий вид формул для коэффициентов распределения.



Норма дисконта, используемая при дисконтировании разновременных затрат, результатов и эффектов, отражает годовую доходность альтернативных и доступных для участника проекта вложений капитала. При этом термин "годовая доходность" может трактоваться по-разному, что приводит к различным формулам для расчетов коэффициентов дисконтирования и равномерности.

При "непрерывной" трактовке значение нормы дисконта, равное Е, означает, что участник считает эквивалентными получение единовременного (в момент приведения t = t(0) дохода К рублей и непрерывного равномерного получения доходов с интенсивностью ЕК рублей в год в течение неограниченного периода, начиная с момента t(0). Соответственно проект, предусматривающий единовременные инвестиции К и последующее равномерное непрерывное получение доходов с интенсивностью ЕК рублей в год, рассматривается как лежащий на границе между эффективными и неэффективными. Такая трактовка используется в расчетах "в непрерывном времени", в том числе при аналитической оценке эффективности ИП на основе математического моделирования непрерывных денежных потоков. В этом случае коэффициент дисконтирования (приведения к моменту времени t(0) затрат, результатов и эффектов, осуществляемых в малом интервале времени (t, t + dt), рассчитывается по формуле




0

-E(t - t )

альфа = e .

t


Дисконтирование затрат (и аналогично - результатов или эффектов), распределенных в некотором конечном (а не бесконечно малом) интервале времени (s, s + дельта), осуществляется при этом следующим способом. Пусть F(t) - исчисленная накопленным итогом сумма затрат, осуществляемых от начала интервала (момента s) до момента t, a F(дельта)- полная сумма этих затрат. Тогда дисконтированная сумма затрат F_инт, осуществляемых на всем рассматриваемом интервале, составит


0

s + дельта E(t - t)

F = интеграл e dF(t).

инт s


При использовании второго способа дисконтирования это выражение можно представить в виде:


F = F(дельта) x альфа x гамма,

инт


0

-E (s + дельта - t )

где альфа = e - коэффициент дисконтирования,

относящийся к концу интервала.

гамма - коэффициент распределения, рассчитываемый по формуле:


s + дельта E(s + дельта - t) dF(t)

гамма = интеграл e ───────── =

s F(дельта)


s + дельта E(s + дельта - t)

= 1 + E интеграл q(t) x e dt, (П6.4)

s


dF(t)

где q(t) = ───────── - доля общих затрат за интервал, осуществленных

F(дельта) до момента t.


В частности: - если затраты, результаты или эффекты доетигаются в момент t = s (в начале интервала), расчетная формула (П6.3) для коэффициента распределения принимает вид


E дельта

гамма = e ; (П6.5)


- если затраты, результаты или эффекты достигаются при t = s + дельта (в конце интервала), коэффициент распределения (П6.3) оказывается равным единице:


гамма = 1; (П6.6)


- если затраты, результаты или эффекты осуществляются равномерно на

интервале (s; s + дельта), расчетная формула (П6.3) для коэффициента

распределения принимает вид


E дельта

-1

e

гамма = ───────────. (П6.7)

E x дельта


Аналогично могут быть получены формулы для гамма при первом способе учета внутришаговых распределений денежных потоков.

При "дискретной" трактовке, принятой в настоящих Рекомендациях, значение нормы дисконта, равное Е, означает, что участник считает эквивалентными получение единовременного (в момент t(0) дохода К рублей и равномерного получения доходов ЕК рублей ежегодно, в конце каждого года, т.е. в моменты t(0) + 1, t(0) + 2 .... Соответственно проект, предусматривающий единовременные инвестиции К рублей и последующее получение доходов ЕК рублей ежегодно, рассматривается как лежащий на границе между эффективными и неэффективными.

Расчетные формулы для коэффициента равномерности в этом случае отличаются от (П6.5) - (П6.7) заменой Е на 1n (1 + E).

Для разных распределений затрат, результатов или эффектов по m-му шагу при этом получаются формулы для гамма_m, приведенные в табл.П6.1 и П.6.2.

При малых (до 10 - 20%) значениях Е формулы для непрерывного и дискретного случаев дают практически одинаковые значения.

В случае если на каком-либо шаге распределения во времени притоков и оттоков реальных денег существенно различаются (например, оттоки осуществляются в основном в начале шага, а притоки - в конце), рекомендуется во избежание значительных ошибок, применять к притокам и оттокам реальных денег разные значения коэффициентов распределения, особенно если длительность шага более 1 года.

Учет изменений нормы дисконта во времени



Норма дисконта в общем случае отражает скорректированную с учетом инфляции минимально приемлемую для инвестора доходность вложенного капитала при альтернативных и доступных на рынке безрисковых направлениях вложений. В современных российских условиях таких направлений вложений практически нет, поэтому норма дисконта обычно считается постоянной во времени и определяется путем корректировки доходности доступных альтернативных направлений вложения капитала с учетом факторов инфляции и риска.

Тем не менее из общих соображений можно утверждать наличие общей тенденции к снижению нормы дисконта во времени.

Прежде всего финансовые рынки страны совершенствуются и государственное управление ими становится все более эффективным, а ставка рефинансирования ЦБ РФ снижается, что ведет к сокращению сферы получения чрезмерно высоких доходов на вложенный капитал. Поэтому если сегодня инвестор будет вкладывать средства в проект с годовой доходностью (в СКВ или в неизменных ценах) не менее 15%, то через несколько лет он согласится и на 10%.

Кроме того, по мере совершенствования законодательства снижается и политический риск долгосрочного инвестирования, а развитие внешнеэкономических и внешнеторговых отношений способствует сближению норм дисконта российских коммерческих структур с более низкими нормами для развитых стран (норма дисконта там определяется по доходности государственных долгосрочных ценных бумаг, скорректированной на темп инфляции).

По указанным причинам теоретически правильным в настоящее время является проведение расчетов эффективности ИП с учетом постепенно снижающейся нормы дисконта.

Необходимость учета изменений нормы дисконта по шагам расчетного периода может быть обусловлена также методом установления этой нормы. Так, для оценки коммерческой эффективности проекта в целом зарубежные специалисты по управлению финансами рекомендуют использовать коммерческую норму дисконта, установленную на уровне средневзвешенной стоимости капитала (Weighted Average Cost of Capital, WACC. B этих целях на каждом шаге расчетного периода капитал фирмы делится по видам (например, на три вида собственный капитал в обыкновенных акциях, привилегированные акции и заемный капитал) и определяется в рыночных (прогнозных) ценах. По каждому i-му виду капитала определяется его доля d_i в общей рыночной стоимости капитала и норма дисконта E_i. При этом норма дисконта для заемного капитала принимается равной ставке процента по займу, а для собственного капитала и привилегированных акций устанавливается фирмой. Общая норма дисконта для фирмы (а также для проекта в целом, если структура его капитала известна и совпадает со структурой капитала фирмы) рассчитывается после этого как средневзвешенная.


WACC = сумма d E . (П6.10)

i i i


При этом по мере изменения структуры капитала и дивидендной политики WACC будет вменяться.

Дисконтирование денежных потоков при меняющейся во времени норме дисконта отличается, прежде всего, расчетной формулой для определения коэффициента дисконтирования. В случае когда в качестве момента приведения принято начало расчетного периода (конец вага 0, момент t(0) = 0), коэффициент дисконтирования для w-ro шага рассчитывается по формуле:


1

альфа = ──────────────────────────────────, (П6.11)

m дельта дельта

0 m

(1 + Е ) ... (1 + Е )

0 m


где Е , ... Е - нормы дисконта соответственно на 0-м, ..., m-м

0 m шагах,

дельта , ..., дельта - длительности этих шагов в годах или долях

0 m года.


Коэффициент распределения для каждого шага определяется по формулам п.2.7 или по формуле (П6.9) настоящего Приложения, при этом в качестве нормы дисконта Е принимается ее значение на данном шаге.

При расчете в "непрерывном времени" коэффициент дисконтирования затрат, результатов и эффектов, осуществляемых в конечном интервале времени (0, t), рассчитывается по формуле


t

- интеграл E(s)ds

0

альфа = е , (П6.12)

t


где Е(s) - норма дисконта в момент времени s.