Методическая система обучения студентов педвуза дифференциальному и интегральному исчислению функций в контексте фундаментализации образования

Вид материалаАвтореферат

Содержание


Раздел 2.2. «Содержание обучения студентов-математиков педвуза
Подобный материал:
1   2   3   4
Раздел 1.2. «Конструирование методической системы обучения будущих учителей математики дифференциальному и интегральному исчислению функций» посвящен построению методической системы обучения студентов-математиков педвуза основам математического анализа в контексте фундаментализации образования. Методологическую основу конструирования данной системы составляют: системный подход, концепция математической и профессионально-педагогической подготовки будущих учителей математики в условиях фундаментализации образования, принципы обучения математике в высшей школе. В разделе проводится анализ системы на методологическом уровне.

Компонентный состав конструируемой методической системы в себя включает: цели обучения дифференциальному и интегральному исчислению, содержание обучения данному разделу анализа, а также методы, формы и средства обучения. Внешняя среда системы описывается такими тенденциями современного образования, как его фундаментализация и интенсификация, гуманизация и гуманитаризация, дифференциация и индивидуализация, а также общие цели математического образования, предмет математического анализа, место анализа в системе других математических наук и дисциплин естественнонаучного цикла, его применения, структура личности студента и закономерности ее развития, некоторые новые результаты исследований по математическому анализу. Из перечисленных составляющих внешней среды одной из главных является фундаментализация математического образования.

В данном разделе определяются связи между компонентами системы и внешней средой. Последняя наибольшее влияние оказывает на цели обучения студентов-математиков педвуза дифференциальному и интегральному исчислению функций. Цели обучения подразделяются на четыре группы: общеобразовательные, развивающие, воспитательные, практические. Отмечается, что в контексте постановки совокупности целей обучения студентов в педвузе дифференциальному и интегральному исчислению каждая из составляющих внешней среды методической системы может занимать доминирующее (лидирующее) положение при формировании соответствующей цели обучения. Приводимый тезис сопровождается соответствующими иллюстрациями.

В этом же разделе показано, что составляющие внешней среды оказывают значительное влияние и на содержание обучения будущих учителей математики дифференциальному и интегральному исчислению функций. В содержание помимо традиционных предметных знаний основ анализа включаются и такие элементы, как действия, адекватные основным понятиям, принципиальным теоремам и утверждениям, общенаучные методы познания, различные эвристики и эвристические приемы, аксиоматический и алгоритмический методы, метод моделирования, обсуждение места дифференциального и интегрального исчисления в математическом анализе и системе других математических дисциплин, изучаемых будущими педагогами, этапы развития анализа, исторические факты, связанные с его становлением, вклад отдельных ученых в его развитие. Автором подчеркивается, что на содержание обучения дифференциальному и интегральному исчислению в педвузе предмет математического анализа оказывает самое непосредственное влияние, в частности влияет его непрерывное расширение и развитие. Последние в контексте новых образовательных тенденций (в том числе фундаментализации и гуманитаризации) побуждают к включению в содержание обучения студентов соответствующих достижений и новых результатов в области математического анализа в последние годы, а также нерешенные проблемы и задачи. Отбор содержания обучения осуществляется на основе системы принципов отбора и представляется развивающейся системой, причем развитие осуществляется через деятельность и преподавателя (обучающего), и студентов (обучаемых).

Метод обучения студентов дифференциальному и интегральному исчислению в работе рассматривается как способ развития деятельностей преподавателя и студента и предметного содержания основ анализа. Приводится общая классификация методов обучения будущих учителей рассматриваемой области математики. В разделе подчеркивается, что в практике работы со студентами автор часто использует такие специальные методы обучения, как метод ключевых и теоретических задач, самостоятельного осмысления новых математических фактов по первоисточникам, формулирования обобщений утверждений, метод научных дискуссий, метод проектной деятельности, представляющие эвристические и исследовательские методы обучения.

Под формой обучения дифференциальному и интегральному исчислению функций понимается способ взаимодействия дидактических приемов преподавателя математического анализа и познавательных действий обучающихся студентов в процессе решения познавательных задач. Формы процесса обучения в вузе диктуются отношениями между преподавателем и студентами в решении учебных задач. Выделяемые в разделе отношения обусловливают рассмотрение фронтальной, коллективной, групповой, индивидуальной, совместной форм. В частности, для совместной формы обучения характерно взаимодействие преподавателя со студентами разных курсов и студентов разных курсов друг с другом в рамках общего занятия или выполнения некоторых заданий. В классификацию форм обучения дифференциальному и интегральному исчислению будущих учителей математики положены количественные характеристики обучаемого контингента.

Феномены фундаментализации и интенсификации, дифференциации и индивидуализации математического образования побуждают к активному культивированию внеаудиторных форм обучения студентов, помогающих решать следующие дидактические задачи: выявлять наиболее способных и талантливых студентов, формировать устойчивый интерес к исследовательской работе, углублять и расширять соответствующие математические знания, навыки и умения обучаемых, развивать математическую интуицию и логическое мышление, повышать уровень математической культуры. Внеаудиторная работа рассматривается как составная часть эффективного учебного процесса.

Из организационных форм обучения, представляющих внеаудиторные формы обучения, особо выделяется студенческий научно-исследовательский семинар, работающий по типу академических научных семинаров. В рамках такого семинара удается организовать изучение дополнительных вопросов дифференциального и интегрального исчисления, важных для профессиональной подготовки будущих учителей математики, осуществлять исследование открытых вопросов и проблем математического анализа. Участвующие в работе семинара студенты учатся находить нужную научную информацию, вырабатывают навыки отслеживания новых научных сведений по интересующей тематике, приобретают опыт ведения исследования и обсуждения научных результатов.

В этом же разделе при характеризации средств обучения дифференциальному и интегральному исчислению функций студентов-математиков педвуза подчеркивается, что в работе со студентами придается большое значение воспитанию в обучаемых потребности самостоятельно изучать учебники по математическому анализу, читать научные, научно-методические и научно-популярные статьи из периодических журналов и сборников (в том числе зарубежных изданий), обращаться к соответствующей литературе учебного и научного характера информационно-электронного ресурса.

Из средств обучения студентов дифференциальному и интегральному исчислению функций особо выделяются математические задачи, имеющие образовательное, практическое, методическое, воспитательное значения. В разделе осмысляется роль так называемых ключевых и теоретических задач. При конструировании систем задач, используемых в обучении студентов, исходим из того, что каждая такая система должна быть нацелена на формирование знаний, умений, навыков и математических компетенций, позволяющих успешно изучать математический анализ; на формирование профессионально значимых знаний и умений; на приобретение навыков самостоятельной работы; на приобщение студентов к творческой и исследовательской деятельности.

В разделе обсуждается также роль компьютера как информационно-технического средства обучения и средства управления учебной деятельностью обучаемых.

Раздел 1.3. «Общие цели математического образования и предмет математического анализа как составляющие внешней среды методической системы обучения» содержит три подраздела. В 1.3.1. «Общие цели математического образования» подчеркнуто, что сегодня в условиях модернизации системы образования на первый план выступает личностно-ориентированное обучение, поскольку само образование характеризуется усилением внимания к обучаемому, к его саморазвитию, к общечеловеческим ценностям, к воспитанию в обучаемых умения находить свое место в жизни. Максимально возможное раскрытие творческих способностей человека и их реализация есть благо одновременно и для общества, и для самого человека, поэтому главной целью системы образования следует считать воспитание личности, способной и готовой к саморазвитию. Главная ценность всей системы образования состоит в ее способности открыть, сформировать и упрочить индивидуальные ценности образования у обучаемых (В. П. Зинченко).

Наблюдающийся информационный бум четко ставит проблему: как научить лучше за меньшее время? Решение этой проблемы видится в следующем: необходимо менять традиционные методы обучения, резко снижать долю репродуктивных подходов, учить критически относиться к изучаемому материалу, воспитывать желание и необходимость анализировать информацию, приобщать к научному исследованию. В отношении обучения любой категории учащихся актуален принцип: важно «учить учиться».

Автор концентрирует внимание на общих целях вузовского математического образования. Одной из таких целей является воспитание и развитие личности средствами математики. Систематическое изучение математики должно преследовать цель формирования у будущих специалистов научного мировоззрения, которое предполагает знакомство с природой научного знания, с принципами построения научных теорий, в том числе естественнонаучных и математических теорий. Это осуществляется посредством осознания взаимосвязи реального и идеального, происхождения математических абстракций из практики, характера отражения математикой окружающего нас мира, роли математического моделирования в научном познании и в практике.

К общим целям математического образования относим также обеспечение устойчивого интеллектуального развития обучаемых, включающее формирование и развитие определенных качеств мышления, необходимых в жизни. Прежде всего, это абстрактное мышление и дедуктивное мышление, столь характерные для математиков-специалистов, а также эвристическое мышление и творческое мышление. Кроме того, будущему специалисту необходимо обладать логическим и алгоритмическим мышлением, навыками исследовательской деятельности. Важными целями математического образования являются и формирование математического стиля мышления, математической направленности ума, «свернутого» мышления, присущего творческим людям, развитие гибкости мышления, сообразительности.

Многие из приведенных общих целей математического образования имеют перспективную направленность, носят самый общий характер, в некотором смысле являются идеализированными, стратегическими (термин В. А. Тестова).

В подразделе 1.3.2. «Предмет математического анализа» обсуждается объект и предмет современной математики, метод математического моделирования и предмет математического анализа как области математики. Актуальность рассмотрения объекта сегодняшней математики объясняется тем обстоятельством, что математика в предыдущее и настоящее столетия сильно изменилась, она шагнула в своем развитии далеко вперед. Многие ее разделы стали еще более абстрактными, появились и совершенно новые, расширился круг приложений этой науки.

В трактовке предмета современной математики автор придерживается позиций Л. Д. Кудрявцева: математика изучает математические структуры. Рассмотрены различные характеризации понятия «математическая структура», при этом подчеркивается, что математическая структура может быть непосредственной математической моделью какого-либо реального явления. Если это не так, то она в той или иной степени может служить математическим аппаратом для изучения моделей реальных явлений. Приведены различные классификации математических моделей, обсуждается суть метода математического моделирования как метода изучения явлений посредством математических моделей.

В рамках данного подраздела анализируются известные в литературе трактовки предмета математического анализа. Следуя С. М. Никольскому, предметом математического анализа называем изучение функций и их обобщений методом пределов.

В подразделе 1.3.3. «Влияние предмета математического анализа на содержание обучения студентов-математиков педвуза дифференциальному и интегральному исчислению функций» подчеркивается важность изучения тех или иных структур математического анализа, которые непосредственно моделируют реальные процессы и явления окружающего нас мира. Отмечается, что иногда одни и те же структуры способны моделировать совершенно разные реальные явления. Например, производная функции может моделировать скорость, угловой коэффициент касательной к плоской кривой в заданной точке, линейную плотность в точке неоднородного стержня, силу тока в данный момент времени и т. д.

В исследовании показано, что на содержание математической подготовки студентов по дифференциальному и интегральному исчислению функций непрерывное воздействие должны оказывать динамичное расширение предмета математического анализа и тенденции развития ряда его направлений (в сочетании с определенным консерватизмом, связанным с продолжением российских традиций обучения анализу студентов в высшей школе). Обоснована целесообразность более обстоятельного знакомства студентов с неравенствами, которые играют большую роль в вопросах приложений дифференциального и интегрального исчисления, со свойствами выпуклых и логарифмически выпуклых функций, также имеющих значительные применения. При изучении основ анализа студентам полезно иметь дело не только с классическими утверждениями, но и развитием фактов.

В разделе 1.4. «Другие составляющие внешней среды методической системы обучения студентов педвуза дифференциальному и интегральному исчислению функций» рассматриваются такие феномены математического образования, как его индивидуализация, дифференциация, гуманизация и гуманитаризация, интенсификация. Кроме перечисленных составляющих внешней среды конструируемой методической системы также осмысляются структура личности студента и закономерности ее развития, отдельные важные исследования последних лет, проведенные различными авторами в рамках дифференциального и интегрального исчисления функций. Таким образом, в данном разделе продолжается анализ методической системы на методологическом уровне.

Опираясь на исследования проблемы личности известными учеными (В. С. Леднев, Г. И. Саранцев и др.), в ее структуре выделяем мотивационный, операционально-действенный, эмоционально-волевой, нравственный компоненты. Показано, что установление соответствующих связей между компонентами структуры личности и конкретными видами математической деятельности при обучении студентов дифференциальному и интегральному исчислению может оказывать целенаправленное влияние на личность средствами математического анализа, владение такими связями позволяет осуществлять развитие личности студента-математика педвуза. Так, при освоении доказательств основных теорем дифференциального и интегрального исчисления у студента развивается логическая составляющая мышления, а при решении задач и поиске обобщений теорем – эвристическая составляющая. Реализация строгих доказательств утверждений отражается и на формировании морально-этических качеств личности. Лаконичные математические выкладки, неожиданные способы решения задач позволяют развивать эстетические чувства.

Говоря об индивидуальном подходе в обучении студентов, автор акцентирует внимание на гибком и умелом использовании преподавателем различных методов, форм и средств педагогического влияния на обучаемых, педагогическом сотрудничестве и взаимодействии с ними с целью достижения высоких результатов образовательной деятельности.

В данном разделе индивидуализация обучения дифференциальному и интегральному исчислению функций студентов-математиков в педвузе характеризуется следующими положениями: 1) обучаемые студенты должны иметь максимально возможную самостоятельность в выборе путей и средств практической реализации основных теоретических положений изучаемого раздела анализа; 2) студентам необходимо предоставить условия и возможности для специализации по отдельным направлениям дифференциального и интегрального исчисления; 3) в процессе обучения важно реализовать личностные возможности каждого студента – будущего учителя математики: методические, организаторские, научные.

Индивидуализация обучения способствует самостоятельному приобретению знаний, формированию умений и навыков, обеспечивает интенсификацию учебного процесса, глубину в усвоении студентами знаний. Она стимулирует опережающее обучение на различных этапах учения, формирует надежный исследовательский уровень обучения.

В работе дана обстоятельная характеристика феномена дифференциации обучения математике, проанализировано его хронологическое развитие. В отношении обучения студентов-математиков педвуза выделяются два типа дифференциации: внутренняя и внешняя. Внутренняя дифференциация учитывает индивидуальные особенности студентов в условиях работы преподавателя со всем курсом (потоком) или учебной группой. Внешняя же дифференциация характеризуется учетом индивидуальных особенностей обучаемых студентов в условиях специальной группы (в случае проектируемой методической системы обучения это, например, группа участников студенческого научно-исследовательского семинара, комплектуемая студентами разных курсов).

В характеризуемом разделе с опорой на исследования Т. А. Ивановой, Т. Н. Мираковой, Г. И. Саранцева и др. ученых также производится осмысление феноменов гуманизации и гуманитаризации математического образования.

Гуманизация – это феномен, направленный на создание максимально благоприятных условий для развития личности школьника или студента, на организацию условий для раскрытия способностей обучаемых, совершенствования их нравственной и творческой сторон, преодоления «обезличенности» образования. Гуманизация образования обусловливает его гуманитаризацию. В разделе отмечается, что в обширной литературе, посвященной исследованию феномена гуманитаризации образования, в это понятие вкладывался разный смысл. Автор в вопросе трактовок данного понятия придерживается позиций Т. Н. Мираковой и Г. И. Саранцева. «Подлинной сутью гуманитаризации математического образования является отражение в нем деятельностной концепции знания»9. Деятельностная сторона содержания обучения будущих педагогов дифференциальному и интегральному исчислению в работе отражается, в первую очередь, через реализацию деятельностных концепций работы с принципиальными теоремами и определениями основных понятий.

В этом же разделе в качестве составляющей внешней среды конструируемой методической системы рассматриваются некоторые важные новые результаты исследований и открытия в области вещественного анализа функций, восходящие, в основном, к 90-м гг. прошлого столетия, а также текущему десятилетию настоящего. Упоминаемые результаты являются важными с точки зрения их использования в вопросе обучения студентов педвуза основам математического анализа, а также привития обучаемым исследовательских навыков ведения научной работы. Новые факты и исследования касаются: различных подходов к построению курса дифференциального исчисления функций одной переменной и нескольких переменных (в частности, подхода, использующего понятие функции, дифференцируемой по Каратеодори), элементов негладкого анализа, теории неравенств и выпуклых функций, обобщений и развитий классических теорем анализа о среднем значении (Ролля, Лагранжа, Коши, Флетта, формулы Тейлора, правил Лопиталя–Бернулли), сведений об интегралах, некоторых вопросов аппроксимации функций.

В Главе II «Теоретические основы обучения студентов математического факультета педвуза дифференциальному и интегральному исчислению в контексте фундаментализации образования» изучается отражение идей фундаментализации образования в компонентах конструируемой методической системы обучения будущих учителей математики основам математического анализа. В частности, показывается влияние феномена фундаментализации математического образования на постановку целей обучения, отбор содержания обучения, выбор средств обучения. В данной главе анализ методической системы производится на теоретическом уровне.

В разделе 2.1 «Цели обучения студентов-математиков дифференциальному и интегральному исчислению функций» проводится анализ общеобразовательных, развивающих, воспитательных и практических целей обучения указанной дисциплине в контексте подготовки будущих учителей.

Одной из важнейших развивающих целей является приобщение обучаемых к творческой деятельности средствами математического анализа. На пути ее достижения принципиальным является вовлечение студентов в научно-исследовательскую работу.

Автор подробно останавливается также на важности постановки цели, восходящей к формированию у студентов эвристического мышления. В исследовании показано, что формирование творческого, эвристического мышления должно стать одним из самых важных моментов в совершенствовании методов обучения студентов. В курсе дифференциального и интегрального исчисления необходимо специально рассматривать вопросы, прививающие навыки самостоятельного поиска новых закономерностей и связей и знакомящие с достаточно общими, едиными приемами самостоятельного целенаправленного поиска решения задач и доказательства теорем.


Раздел 2.2. «Содержание обучения студентов-математиков педвуза

дифференциальному и интегральному исчислению» включает 4 подраздела, его главная цель – охарактеризовать содержание математического образования будущих учителей, касающегося основ анализа.

В подразделе 2.2.1. «Методологические основы формирования содержания обучения будущих учителей основам анализа» анализируется концепция обучения предмету, представленная В. В. Краевским и трактуемая содержание как «педагогически адаптированный социальный опыт человечества». Отправляясь от положений этой концепции, автор формулирует свою – концепцию содержания образования будущих учителей по основам анализа, в которой отбору содержания обучения придается статус одной из стратегий обучения. Данная концепция, системный подход и принципы отбора содержания образования будущих учителей по основам анализа положены в основу проектирования содержания обучения студентов педвуза дифференциальному и интегральному исчислению функций. Содержание выступает подсистемой конструируемой методической системы обучения.

В подразделе принципы отбора математического содержания образования группируются в блоки: блок общих, блок ключевых и блок дополняющих принципов. Приводится характеризация каждого из этих блоков, а также механизм, или процесс отбора содержания обучения студентов основам анализа в соответствии с выделенными принципами. Конструирование содержания обучения дифференциальному и интегральному исчислению студентов-математиков в педвузе на основе перечисленных принципов позволяет рассматривать это содержание как развивающуюся систему с атрибутами целостности и открытости, при этом в упоминаемом развитии участвует не только преподаватель, но и обучаемые им студенты.

Подраздел 2.2.2. «Обоснование предметной составляющей содержания обучения дифференциальному и интегральному исчислению» содержит комментарии мотивов включения в совокупность предметных знаний тех или иных вопросов основ анализа для усвоения будущими учителями математики с опорой на выделенные принципы отбора содержания обучения, при этом весь спектр знаний по дифференциальному и интегральному исчислению условно подразделяется на компоненты – целевой и опосредованный. В приложении Б к подразделу выделены условные составляющие целевых знаний, а также приведено детализированное содержание обучения студентов дифференциальному и интегральному исчислению функций, включающее в себя не только целевые знания, но и опосредованные.

В подразделе 2.2.3. «Способы деятельности как составляющая содержания обучения студентов-математиков дифференциальному и интегральному исчислению функций» раскрывается важность реализации деятельностного подхода в обучении будущих учителей, интенсифицирующего учебный процесс. Акцентируется внимание на некоторых особенностях практической реализации деятельностного подхода в обучении дифференциальному и интегральному исчислению функций студентов-математиков в педагогическом вузе. Подчеркивается, что при освоении способов деятельности важно выявлять и разъяснять студентам различные схемы используемых в математическом анализе рассуждений. Одна из таких схем восходит к усвоению определений основных понятий, другая схема связана с усвоением принципиальных теорем рассматриваемого курса (в работе подробно осмысляются различные этапы работы с теоремами и определениями анализа). Показано, что систематическое использование таких схем при обучении студентов полностью отвечает идеям гуманизации и гуманитаризации вузовского математического образования, согласуется с концепцией дифференциации и индивидуализации обучения, реально отражает направления фундаментализации образования.

В подразделе 2.2.4. «Эвристическая составляющая содержания обучения дифференциальному и интегральному исчислению функций» концентрируется внимание на эвристической подготовке будущих учителей математики. В исследовании обсуждаются эвристики, которые могут быть полезны и которые следует иметь в виду студентам-математикам педвуза при изучении дифференциального и интегрального исчисления функций, а также в их будущей профессиональной деятельности.