«Фуллерены углеродные нанотрубки графен»
Вид материала | Документы |
Содержание3.3Графеновые наноленты 3.4Получение графена 3.4.1Механические методы 3.4.2Химические методы 3.4.4Получение графена из раствора 3.4.5Другие методы |
- Углеродные наноматериалы (Фуллерены, нанотрубки и материалы на их основе) симпозиум, 518.27kb.
- Е. В. Жариков Российский химико-технологический университет им. Д. И. Менделеева, Москва, 258.98kb.
- С. М. Планкина «Углеродные нанотрубки», 175.71kb.
- Вступительный экзамен в магистратуру для специальности «5М074000 –наноматериалы и нанотехнологии», 74.37kb.
- N-01-tisncm-2 Паспорт совместного российско-американского проекта, 87.7kb.
- Аннотационный отчет за 2010 год по Программе II «Наноструктурные слои и покрытия: оборудование,, 461.05kb.
- Информационный бюллетень наноструктуры сверхпроводники фуллерены Том 8, выпуск, 324.75kb.
- 6-ая международная конференция, 47.17kb.
- Власов А. В., Литвинов В. В, 80.85kb.
- Информационный бюллетень наноструктуры сверхпроводники фуллерены Том 10, выпуск 13/14, 277.29kb.
3.3Графеновые наноленты
Особо привлекательным представляется способ формирования запрещенной зоны в однослойном графене за счет создания структур нулевого размера, так называемых графеновых нанолент (Graphene NanoRibbon, GNR). Ширина нанолент составляет порядка 10-100 нм. Исследования показали, что в зависимости от атомной структуры краев – креслоподобной (armchair) или зигзагообразной (Zig-Zag) – нанолента графена, длина которой не намного больше ее ширины, может иметь свойства металла или полупроводника. Наноленты, формируемые путем разрезания листа графена вдоль зерен, имеют зигзагообразную структуру и характеризуются в основном свойствами металла, тогда как при разрезании листа вдоль зерен образуется креслоподобная структура. В графеновой ленте такой структуры возможно наличие запрещенной зоны и, следовательно, полупроводниковых свойств. При этом, как показали расчеты специалистов Политехнического института Ренсселира, шириной запрещенной зоны можно управлять, изменяя длину наноленты.
Возможность получения лент графена с металлическими свойствами позволит отказаться от применения проводников в наносхемах. Это устраняет главное препятствие для применения в электронных схемах углеродных нанотрубок, сопротивление которых при присоединении металлических проводников существенно повышается. Работы ученых Института технологии штата Джорджия по анализу удельного сопротивления графеновых нанолент шириной 18 нм и длиной 0,2–1 мкм показали, что при комнатной температуре наноленты по этому параметру не отличаются от медных проводников того же размера.
3.4Получение графена
Существует несколько способов для получения графена, которые можно разделить на три большие группы. К первой группе относятся механические методы получения графена, основной из которых механическое отшелушивание, который на настоящий момент является наиболее распространённым методом для производства больших образцов с размером ~10 мкм, пригодных для транспортных и оптических измерений. Ко второй группе методов относят химические методы, которые отличаются большим процентом выхода материала, но малыми размерами плёнок ~10-100 нм. К последней группе относятся эпитаксиальные методы и метод термического разложения SiC подложки, благодаря которым можно вырастить плёнки графена.
3.4.1Механические методы
При механическом воздействии на высокоориентированный пиролитический графит или киш-графит можно получить плёнки графена вплоть до ~100 мкм. Сначала тонкие слои графита помещают между липкими лентами и отщепляют раз за разом тонкие плёнки графита, пока не будет получен достаточно тонкий слой. После отшелушивания скотч с тонкими плёнками графита и графена прижимают к подложке окисленного кремния. При этом трудно получить плёнку определённого размера и формы в фиксированных частях подложки (горизонтальные размеры плёнок составляют обычно около 10 мкм). Найденные с помощью оптического микроскопа (они слабо видны при толщине диэлектрика 300 нм) плёнки подготавливают для измерений. С помощью атомно-силового микроскопа определяют реальную толщину плёнки графита (она может варьироваться в пределах 1 нм для графена). Графен можно также определить при помощи рамановского рассеяния света или измерением квантового эффекта Холла.
Альтернативный метод заключается в том, что окисленную подложку кремния покрывают эпоксидным клеем (толщиной ~10 мкм), и тонкую пластинку графита прижимают к клею при помощи пресса. После удаления графитовой пластинки с помощью липкой ленты на поверхности клея остаются области с графеном и графитом.
Существует метод печати графеновых электрических схем (ранее этот метод использовался для печати тонкоплёночных транзисторов на основе нанотрубок и для органической электроники). Сам процесс печати состоит из последовательного переноса с подложки Si/SiO2 золотых контактов, графена и диэлектрика с металлическим затвором на прозрачную подложку из полиэтилентерефталата (ПЭТФ), предварительно нагретую выше температуры размягчения до 170 °C, благодаря чему контакты вдавливаются в ПЭТФ, а графен приобретает хороший контакт с материалом подложки. Этот метод пригоден для нанесения графена на любую подложку, пригодную, в частности, для оптических измерений.
3.4.2Химические методы
Кусочки графена также можно приготовить из графита, используя химические методы. Для начала микрокристаллы графита подвергаются действию смеси серной и соляной кислот. Графит окисляется, и на краях образца появляются карбоксильные группы графена. Их превращают в хлориды при помощи тионилхлорида. Затем под действием октадециламина в растворах тетрагидрофурана, тетрахлорметана и дихлорэтана они переходят в графеновые слои толщиной 0,54 нм. Этот химический метод не единственный, и, меняя органические растворители и химикаты, можно получить нанометровые слои графита.
3.4.3Эпитаксия
Эпитаксия - закономерное нарастание одного кристаллического материала на другой, т.е. ориентированный рост одного кристалла на поверхности другого (подложки). Данный метод можно использовать для получения графитовых пленок большой площади (до 50 мм2). Графитовая плёнка формируется при термическом разложении поверхности подложки карбида кремния SiC (этот метод получения графена гораздо ближе к промышленному производству), причём качество выращенной плёнки зависит от того, какая стабилизация у кристалла: C-стабилизированная или Si-стабилизированная поверхность — в первом случае качество плёнок выше. Несмотря на то, что толщина слоя графита составляет больше одного монослоя, в проводимости участвует только один слой в непосредственной близости от подложки, поскольку на границе SiC-C из-за разности работ выхода двух материалов образуется нескомпенсированный заряд. Свойства такой плёнки оказались эквивалентны свойствам графена.
3.4.4Получение графена из раствора
Также химики пытаются получить графен из раствора. В добавление к низкой стоимости и высокой производительности, этот метод открывает дорогу ко многим широко используемым химическим техникам, которые позволили бы внедрять графеновые слои в различные наноструктуры либо интегрировать их с различными материалами для создания нанокомпозитов. Однако при получении графена химическими методами есть некоторые трудности, которые должны быть преодолены: во-первых, необходимо достигнуть полного расслоения графита, помещенного в раствор; во-вторых, сделать так, чтобы отслоенный графен в растворе сохранял форму листа, а не сворачивался и не слипался. И двум группам независимых работающих ученых удалось преодолеть вышеназванные трудности и получить графеновые листы хорошего качества, подвешенные в растворе.
Первая группа ученных (Xiaolin Li, Guangyu Zhang, Xuedong Bai, Xiaoming Sun, Xinran Wang, Enge Wang, Hongjie Dai) внедряла серную и азотную кислоты между слоями графита, и затем быстро нагревала образец до 1000°C. Взрывное испарение молекул-интеркалянтов производит тонкие (толщиной в несколько нанометров) графитовые «хлопья», которые содержат множество графеновых слоев. После этого в пространство между графеновыми слоями химически внедряли два вещества — олеум и гидроокись тетрабутиламмония (ГТБА). Обработанный ультразвуком раствор содержал как графит, так и графеновые листы. После этого методом центрифугирования проводили отделение графена.
В тоже время вторая группа ученых (Yenny Hernandez, Valeria Nicolosi, Mustafa Lotya, Fiona M. Blighe, Zhenyu Sun etc.) предложила другую методику для получения графена из многослойного графита — без использования интеркалянтов. Главное, по словам авторов статьи, использовать «правильные» органические растворители, такие как N-метил-пирролидон. Для получения высококачественного графена важно подобрать такие растворители, чтобы энергия поверхностного взаимодействия между растворителем и графеном была такой же, как для системы графен–графен.
3.4.5Другие методы
Если кристалл пиролитического графита и подложку поместить между электродами, то можно добиться того, что кусочки графита с поверхности, среди которых могут оказаться плёнки атомарной толщины, под действием электрического поля могут перемещаться на подложку окисленного кремния. Для предотвращения пробоя (между электродами прикладывали напряжение от 1 до 13 кВ) между электродами также помещали тонкую пластину слюды.
Некоторая комбинация механического метода (графитовым стержнем пишут по поверхности подложки кремния, оставляя плёнки при разрушении) и последующего высокотемпературного отжига (~1100 K) использована для получения тонких слоёв графита вплоть до однослойных плёнок.