«Фуллерены углеродные нанотрубки графен»
Вид материала | Документы |
Содержание1.5Получение фуллеренов 1.6Использование фуллеренов 1.6.1Перечень основных областей применения фуллеренов |
- Углеродные наноматериалы (Фуллерены, нанотрубки и материалы на их основе) симпозиум, 518.27kb.
- Е. В. Жариков Российский химико-технологический университет им. Д. И. Менделеева, Москва, 258.98kb.
- С. М. Планкина «Углеродные нанотрубки», 175.71kb.
- Вступительный экзамен в магистратуру для специальности «5М074000 –наноматериалы и нанотехнологии», 74.37kb.
- N-01-tisncm-2 Паспорт совместного российско-американского проекта, 87.7kb.
- Аннотационный отчет за 2010 год по Программе II «Наноструктурные слои и покрытия: оборудование,, 461.05kb.
- Информационный бюллетень наноструктуры сверхпроводники фуллерены Том 8, выпуск, 324.75kb.
- 6-ая международная конференция, 47.17kb.
- Власов А. В., Литвинов В. В, 80.85kb.
- Информационный бюллетень наноструктуры сверхпроводники фуллерены Том 10, выпуск 13/14, 277.29kb.
1.5Получение фуллеренов
Первые фуллерены выделяли из конденсированных паров графита при лазерном облучении твёрдых графитовых образцов. Следующий важный шаг был сделан в 1990 году В. Кретчмером, Лэмбом, Д. Хаффманом, разработавшими метод получения фуллеренов путём сжигания графитовых электродов в электрической дуге в атмосфере гелия при низких давлениях. В процессе сжигания графитового углерода на стенках камеры оседала сажа, содержащая фуллереноподобные структуры. Довольно скоро удалось подобрать оптимальные параметры испарения графитовых электродов (давление, состав атмосферы, ток, диаметр электродов), при которых достигается наибольший выход фуллеренов, составляющий в среднем 3-12 %.
Попытки экспериментаторов найти более дешёвые и производительные способы получения граммовых количеств фуллеренов (сжигание углеводородов в пламени, химический синтез и др.) к успеху не привели и метод сжигания графита долгое время оставался наиболее продуктивным (производительность около 1 г/час).
Механизм образования фуллеренов при сжигании графита до сих пор остаётся неясным, поскольку процессы, идущие в области горения графита, термодинамически неустойчивы, что сильно усложняет их теоретическое рассмотрение. Неопровержимо удалось установить только то, что фуллерен собирается из отдельных атомов углерода (или фрагментов С2). Для доказательства в качестве анодного электрода использовался графит 13С высокой степени очистки, другой электрод был из обычного графита 12С. После экстракции фуллеренов, было показано методом ядерного магнитного резонанса, что атомы 12С и 13С расположены на поверхности фуллерена хаотично. Это указывает на распад материала графита до отдельных атомов или фрагментов атомного уровня и их последующую сборку в молекулу фуллерена. Данное обстоятельство заставило отказаться от наглядной картины образования фуллеренов в результате сворачивания атомных графитовых слоёв в замкнутые сферы.
Сравнительно быстрое увеличение общего количества установок для получения фуллеренов и постоянная работа по улучшению методов их очистки привели к существенному снижению стоимости С60 за последние 17 лет — с 10000$ до 10-15$ за грамм, что подвело к рубежу их реального промышленного использования.
Однако повысить выход фуллеренов более 10-20 % от общей массы сожжённого графита не удаётся. Если учесть относительно высокую стоимость начального продукта — графита, становится ясно, что этот метод имеет принципиальные ограничения. Многие исследователи полагают, что снизить стоимость фуллеренов ниже нескольких долларов за грамм не удастся. Поэтому усилия ряда исследовательских групп направлены на поиск альтернативных методов получения фуллеренов. Наибольших успехов в этой области достигла фирма Мицубиси, которой, удалось наладить промышленный выпуск фуллеренов методом сжигания углеводородов в пламени, но такие фуллерены содержат кислород. Стоимость таких фуллеренов составляет около 5$ за грамм.
Необходимо отметить, что высокую стоимость фуллеренов определяет не только их низкий выход при сжигании графита, но и сложность выделения, очистки и разделения фуллеренов различных масс из углеродной сажи. Обычный подход состоит в следующем: сажу, полученную при сжигании графита, смешивают с толуолом или другим органическим растворителем (способным эффективно растворять фуллерены), затем смесь фильтруют или отгоняют на центрифуге, а оставшийся раствор выпаривают. После удаления растворителя остается тёмный мелкокристаллический осадок — смесь фуллеренов, называемый обычно фуллеритом. В состав фуллерита входят различные кристаллические образования: мелкие кристаллы из молекул С60 и С70 и кристаллы С60/С70, являются твёрдыми растворами. Кроме того, в фуллерите всегда содержится небольшое количество высших фуллеренов (до 3 %). Разделение смеси фуллеренов на индивидуальные молекулярные фракции производят с помощью жидкостной хроматографии на колонках и жидкостной хроматографии высокого давления (ЖХВД). Наконец, последний этап — удаление остатков растворителя из твёрдого образца фуллерена. Оно осуществляется путём выдерживания образца при температуре 150—250 oС в условиях вакуума.
1.6Использование фуллеренов
Группа специалистов из двух исследовательских организаций штата Вирджиния VCUHS (Virginia Commonwealth University Health System) и Luna Innovations предложили использовать для лечения аллергии химические свойства фуллеренов. Учёные обратили внимание на "умение" фуллерена взаимодействовать со свободными радикалами - химическими молекулами, имеющими неспаренные электроны. Так, фуллерен C60легко присоединяет свободные радикалы, чем и нейтрализует их. Ряд предыдущих исследований показал, что такая особенность фуллеренов может использоваться для защиты нервных клеток от разрушающего действия свободных радикалов. Этот факт очень заинтересовал иммунолога Кристофера Кепли (Christopher L. Kepley) из VCUHS, и он вместе с коллегами решил провести исследование этих особенностей для лечения аллергии. Для этого доктор пригласил к сотрудничеству специалистов из Luna Innovations - фирмы, занимающейся исследованиями в сфере нанотехнологий.
Благодаря усилиям этой компании был создан фуллерен, в который интегрированы дополнительные функциональные группы, повышающие растворимость этих частиц. Затем учёные внедрили эти модифицированные фуллерены мышам в так называемые тучные клетки - клетки соединительной ткани, играющие большую роль в воспалительных процессах при аллергии. После этого мышей подвергли действию аллергенов. Оказалось, что у таких животных сила аллергической реакции резко уменьшилась. Причиной тому - уменьшение выброса гистамина (вещества, вызывающего патологические реакции при аллергии) в 50 раз, а также ослабление действия трёх десятков других веществ аналогичного действия. По данным Кепли, это происходит из-за связывания растворёнными фуллеренами свободных радикалов, возникающих при аллергии.
Не так давно японские ученые сообщали, что нашли лекарство против рака на основе фуллеренов. В то же время, работы в этом направлении активно ведут и в России, зачастую опережающие зарубежные. В частности, группа ученых из Казани и Черноголовки опубликовала статью, в которой сообщают о синтезе новых производных фуллеренов с фармакофорными группами. В работе приведены данные о синтезе, рентгеноструктурном анализе и биологической активности этих веществ. В ходе исследования было впервые установлено, что нитроксидные метанофуллерены проявляют в комбинации с препаратом циклофосфамид противораковую активность против лейкемии, хотя введение этих веществ по отдельности в тех же дозах положительного эффекта не дает.
В перспективе фуллерены могут быть применены как наноструктурные материалы. Одним из типов таких материалов являются металл-фуллереновые плёнки, осаждаемые в вакууме. Уже при малых концентрациях фуллеренов в плёнках титан-фуллерен структурообразующие частицы имеют округлую форму и размеры 15-40 нм, поэтому добавление фуллеренов в сплавы может служить способом создания нано-материалов.
В одном из университетов Швеции в ходе опытов с фуллеренами неожиданно для самих ученых был получен слоеный материал, напоминающий фольгу, проложенную тонкими слоями бумаги. Прозрачный и гибкий материал оказался магнитом и сохранял свои свойства даже при температуре свыше 200 градусов. Его вполне возможно использовать для создания компьютерной памяти с помощью записи лазерным лучом. Благодаря этому достигается очень высокая плотность носителя информации.
Использование фуллеренов в качестве присадки к смазочному маслу существенно (до 10 раз) снижает коэффициент трения металлических поверхностей и соответственно повышает износостойкость деталей и агрегатов.
Корпорация Mitsubishi Chemical продемонстрировала на Международной выставке фотогальванических элементов в Японии (PV Expo 2009) свои последние разработки в сфере солнечной энергетики. Компания показала свои органические тонкопленочные солнечные элементы, которые, имея площадь всего в 2 кв. мм, вырабатывают электричество с коэффициентом преобразования в 4,9%.
В органических тонкопленочных солнечных элементах от Mitsubishi Chemical используются производное соединение фуллерена в качестве материала n-типа и разработанный компанией "бензопорфирин (BP)" — он выступает в роли материала p-типа. Компания создала бензопорфирин для изготовления TFT, которые должны были комплектоваться в электронную бумагу и OLED, еще в 2006 году. Затем было решено использовать новый материал для изготовления солнечных элементов.
1.6.1Перечень основных областей применения фуллеренов
- Новые классы сверхпроводников, полупроводников, магнетиков, сегнетоэлектриков, нелинейных оптических материалов;
- Новые фуллереновые технологии синтеза алмазов и алмазоподобных соединений сверхвысокой твердости;
- Новые классы полимеров с заданными механическими, оптическими, электрическими, магнитными свойствами для записи и хранения информации;
- Новые типы катализаторов и сенсоров для определения состава жидких и газовых сред;
- Новые классы антифрикционных покрытий и смазок, в том числе, на основе фторсодержащих соединений фуллеренов;
- Новые виды топлив и добавок к топливам;
- Использование в солнечных элементах;
- Новые классы соединений для фармакологии и медицины, в том числе, противовирусные и нейротропные препараты, сорбенты для гемосорбции.