Совершенствование технологических процессов и технических средств для возделывания и уборки картофеля

Вид материалаАвтореферат

Содержание


Жилкин Виталий Афанасьевич
Рахимов Раис Саитгалеевич
Мударисов Салават Гумерович
Общая характеристика работы
Проблемная ситуация.
Цель работы.
Задачи исследования
Объект исследований.
Предмет исследований
Научная новизна основных положений, выносимых на защиту.
Практическая значимость.
Апробация результатов исследований.
Структура и объем диссертации.
Содержание работы
Результаты исследований и основные положения
Подобный материал:
  1   2   3


На правах рукописи

ЛАТЫПОВ Рафкат Мирхатович




СОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИЧЕСКИХ

ПРОЦЕССОВ И ТЕХНИЧЕСКИХ СРЕДСТВ

ДЛЯ ВОЗДЕЛЫВАНИЯ И УБОРКИ КАРТОФЕЛЯ


Специальность 05.20.01 – Технологии

и средства механизации сельского хозяйства




АВТОРЕФЕРАТ



диссертации на соискание ученой степени

доктора технических наук


Челябинск - 2010


Работа выполнена на кафедре «Эксплуатация машинно-тракторного парка» Федерального государственного образовательного учреждения высшего профессионального образования «Челябинская государственная агроинженерная академия».


Научный консультант:

Заслуженный деятель науки и техники РФ,

доктор технических наук, профессор

Жилкин Виталий Афанасьевич


Официальные оппоненты:

Заслуженный работник высшей школы РФ,

доктор технических наук, профессор

Рахимов Раис Саитгалеевич





доктор технических наук, профессор

Костюченков Николай Васильевич





доктор технических наук, доцент

Мударисов Салават Гумерович


Ведущая организация:

ГНУ «Южно-Уральский научно-исследовательский институт

плодоовощеводства и картофелеводства»

Россельхозакадемии.


Защита состоится 28 октября 2010 года, в 10 часов на заседании диссертационного совета Д 220.069.01 при ФГОУ ВПО «Челябинская государственная агроинженерная академия» по адресу 454080, г.Челябинск, пр.Ленина,75.


С диссертацией можно ознакомиться в библиотеке Челябинской государственной агроинженерной академии.


Автореферат разослан « » сентября 2010 года и размещен на официальном сайте ВАК Минобрнауки России v.ru.


Ученый секретарь диссертационного совета

доктор технических наук, профессор Возмилов А.Г.


Общая характеристика работы



Актуальность проблемы. Правительство РФ обозначило основные направления развития аграрного сектора, отраженные в приоритетных национальных проектах, предусматривающие повышение эффективности сельскохозяйственного производства, в том числе производства картофеля. За последние 15 лет в стране произошло снижение валового сбора картофеля почти в три раза. Увеличение урожайности картофеля является основной целью при решении большинства задач, связанных с усовершенствованием технологических процессов и рабочих органов сельскохозяйственных машин. Для удовлетворения потребностей государства в картофеле необходимо довести его урожайность до 200…250 и более центнеров с гектара с наименьшими затратами ручного труда.

Производство картофеля связано с большими энерго- и трудозатратами, из которых основная доля приходится на уборку. Картофель по энергоемкости в 4-5 раз превышает этот показатель по возделыванию зерновых культур. По данным Кущева И.Е., затраты энергии на обработку почвы составляют до 30-35% от общих затрат, на посадку – 8-10% и на механизированную уборку урожая – 50-60%, из которых 53-57% приходится на долю сепарации. Через сепарирующие рабочие органы проходит около 1000 т почвы на один гектар. Исследования работы рабочих органов почвообрабатывающих машин, применяемых в современной технологии производства картофеля, показывают, что значительная часть их не отвечает агротехническим требованиям. Для них характерно низкое качество выполнения технологического процесса обработки почвы. При уборке картофеля комбайнами 35-45% клубней повреждаются, а количество почвы в таре колеблется от 10 до 50%.

Затраты труда на возделывание картофеля по данным Госкомстата, в среднем составляют: на 1 га площади 150…400 чел.-ч, на 1 ц продукции - 4,0…6,5 чел.-ч. Основной причиной высоких затрат труда на производство единицы продукции является значительная доля ручного труда при уборке картофеля ввиду неэффективного использования механизированных способов уборки, что требует кардинальных мер, направленных на совершенствование структуры посевных площадей, сохранение плодородия почвы, улучшение качества обработки почвы и посадочного материала, внедрение прогрессивных технологий возделывания.

Создание новых и модернизация существующих рабочих органов машин для возделывания и уборки картофеля с целью повышения качества выполнения технологических операций, повышения урожайности, снижения расхода энергоресурсов и затрат ручного труда является актуальной проблемой.

Проблемная ситуация. Урожайность картофеля и удельные затраты ресурсного потенциала (энергетические, трудовые) на единицу продукции определяются в основном созданием условий для развития растений, что находится в тесной взаимосвязи с качеством посадки, обеспечением нормы питания, которые в свою очередь являются следствием обеспечения агротехнически необходимого фракционного состава при предпосадочной обработке почвы и эффективности локального внесения удобрений, обеспечивающих механизированный способ уборки.

Анализ научных исследований показал, что основная доля затрат ресурсного потенциала при возделывании картофеля (энергозатрат до 60% и трудозатрат до 40-50%) приходится на технологический процесс уборки картофеля. В результате раскрытия причинно-следственной связи управляемых факторов и выходных показателей технологических процессов по возделыванию и уборке картофеля сформулирована гипотеза.

Гипотеза: Усовершенствование технологических процессов и технических средств для возделывания картофеля возможно путем раскрытия взаимосвязи между выходом продукции, затратами ресурсного потенциала и качественными показателями предпосадочной обработки почвы и внесения удобрений.

Цель работы. Совершенствование технологических процессов и технических средств для возделывания и уборки картофеля с целью обеспечения механизированной уборки картофеля, повышения урожайности и сокращения удельных затрат ресурсов.

Задачи исследования
  1. Обосновать направления совершенствования технологии возделывания и уборки картофеля за счет повышения качества подготовки почвы и внесения удобрений, снижения ресурсного потенциала (энерго- и трудозатрат) на единицу продукции.
  2. Разработать структурную модель оценки и выбора технологических процессов возделывания и механизированной уборки картофеля, направленных на усовершенствование предпосадочной подготовки почвы и внесения удобрений.
  3. Теоретически исследовать процессы взаимодействия рабочих органов и машин для предпосадочной обработки почвы и внесения удобрений, обосновать их рациональные параметры, режимы работы, технологические и энергетические показатели.
  4. Провести полевые исследования рабочих органов и машин для предпосадочной обработки почвы и внесения удобрений, экспериментально подтвердить их конструктивные параметры, режимы работы, технологические и энергетические показатели.
  5. Провести агротехническую и экономическую оценку работы почвообрабатывающих машин с разработанными рабочими органами и разработать рекомендации по их применению.

Объект исследований. Технологические процессы предпосадочной подготовки почвы рабочими органами почвообрабатывающих машин активного и пассивного типа, технологические процессы внесения удобрений и уборки картофеля.

Предмет исследований. Закономерности влияния параметров и режимов работы рабочих органов машин для предпосадочной подготовки почвы и внутрипочвенного внесения удобрений на качественные характеристики обрабатываемого слоя почвы и затраты ресурсного потенциала.

Научная новизна основных положений, выносимых на защиту. Разработана структурно-технологическая модель анализа и поэтапной оценки технологии возделывания картофеля, позволяющая определить основные направления совершенствования почвообрабатывающих рабочих органов активного и пассивного типа и высевающего устройства для внутрипочвенного внесения удобрений.

Предложена структурная модель подготовки почвы и внесения удобрений, теоретически установлены и экспериментально подтверждены функциональные связи между показателями систем, позволяющие проектировать орудия, режимы использования и выбирать технологии, обеспечивающие повышение урожайности и сокращение ресурсного потенциала при производстве картофеля.

Обоснованы рациональные параметры и режимы работы грядообразователя фрезерного типа и бесприводного ротационного рабочего органа, обеспечивающие высокое качество обработки почвы и повышение эффективности механизированной уборки картофеля. Получены аналитические зависимости раскрывающие взаимосвязь между энергетическими показателями почвообрабатывающих агрегатов и рабочими органами активного и пассивного действия, определено расчетное значение коэффициента протаскивания при определении общего сопротивления тягово-приводного орудия.

Получены зависимости относительной скорости движения частицы по вибрирующей поверхности. Для экспериментального высевающего устройства коэффициент кинематического режима К имеет минимальное и максимальное значения для одного режима работы в отличие от известных вибрационных устройств. Впервые предложены внутрипочвенный способ внесения удобрений под картофель и техническое устройство для его осуществления, обеспечивающее равномерность распределения удобрений. Получены новые экспериментальные данные, отражающие качественные, энергетические и технико-экономические показатели использования почвообрабатывающих машин и МТА при возделывании картофеля. Разработаны методики расчетов на ЭВМ эксплуатационных показателей МТА, позволяющие на стадии комплектования агрегата обосновать его состав, выбор технологических операций, повысить производительность МТА и эффективность использования затрачиваемой энергии на обработку почвы. Новизна технических решений защищена патентом на изобретение, пятью патентами на полезную модель.

Практическая значимость. Работа выполнена согласно межведомственной координационной программе фундаментальных и приоритетных прикладных исследований по научному обеспечению развития агропромышленного комплекса Российской Федерации на 2001-2005 гг. «Научные основы формирования и функционирования эффективного агропромышленного производства» по направлению 02.01 «Разработать новое поколение экологически безопасных ресурсосберегающих машинных технологий и создать комплекс конкурентоспособных технических средств для устойчивого производства приоритетных групп сельскохозяйственной продукции для растениеводства».

На основе исследований составлены исходные требования и технические задания на разработку и создание рабочих органов для предпосадочной обработки почвы. Результаты исследований по обоснованию параметров рабочих органов для обработки почвы, методы расчета и проектирования, чертежно-техническая документация переданы в ООО «Варнаагромаш». Изготовлена опытная партия почвообрабатывающих машин: грядообразователей фрезерного типа с шириной захвата 1,4 и 4,2 м, комбинированные машины с бесприводным ротационным рабочим органом с шириной захвата 2,8 м.

Опытная партия машин для предпосадочной обработки почвы и внутрипочвенного внесения удобрений и усовершенствованная технология внедрены в картофелеводческих хозяйствах Челябинской и Курганской областей, что позволило повысить эффективность механизированных способов уборки картофеля, урожайность картофеля на 25-30% и снизить затраты труда с 4,5-6,0 до 1,6-2,0 чел.-ч на 1 ц продукции. Внутрипочвенное внесение удобрений обеспечивает повышение урожайности картофеля в сравнении со сплошным способом внесения или позволяет получать равную урожайность при снижении нормы внесения удобрений в 3-4 раза.

Апробация результатов исследований. Основные положения исследований доложены, обсуждены и одобрены на научно-технических конференциях профессорско-преподавательского состава ЧГАА (ЧГАУ) (1993-2008 гг.), на секциях НИИМАСП ЧГАА (2003-2006 гг.), УИЦ СХТ при ЧГАА (2006 г.), на международной научно-практической конференции (Кокшетау, 2006 г.), на НТС Межрегионального комитета по сельхозмашиностроению Ассоциации экономического взаимодействия областей и республик Уральского региона (2007 г.), в Российском государственном аграрном университете - МСХА им. К.А.Тимирязева (Москва, 2007 г.); на международной научно-технической конференции (Алматы, 2007 г.).

Публикации. Список основных публикаций по материалам диссертации включает в себя 76 работ, в том числе в изданиях рекомендованных ВАК, опубликовано 10 работ, получены четыре свидетельства о государственной регистрации программ для ЭВМ. Основные положения отражены в двух учебных пособиях, в том числе одно с грифом УМО. Зарегистрированные программные продукты для ЭВМ используются в учебном процессе ФГОУ ВПО «Челябинская государственная агроинженерная академия». Изданы рекомендации НТС Межрегионального комитета по сельхозмашиностроению Ассоциации экономического взаимодействия областей и республик Уральского региона по совершенствованию технологических процессов и технических средств для возделывания и уборки картофеля.

Структура и объем диссертации. Диссертационная работа состоит из введения, пяти глав, выводов, рекомендаций для производства и приложений. Общий объем диссертации составляет 325 страниц, в том числе приложения на 51 страницах. Список литературы включает 249 источников, из них 7 на иностранных языках.


Содержание работы


Во введении обоснована актуальность проблемы, сформулирована цель исследований, показаны научная новизна и практическая значимость, отражены вопросы реализации и апробации полученных научных и практических результатов.

Первая глава «Современное состояние проблемы и направления исследования» посвящена анализу развития картофелеводства в России и в зоне Южного Урала, существующих технологий, машин, рабочих органов и условий возделывания картофеля. Приведены результаты анализа влияния почвенно-климатических условий на работоспособность картофелеуборочных комбайнов. Определены направления совершенствования технологических процессов и технических средств для возделывания картофеля. Сформулированы проблема, научная гипотеза, задачи исследования.

Исследованиями П.М.Василенко, Д.Шпаара, П.Шуманна, Е.А.Глухих, В.П.Горячкина, М.И.Кана, Н.М.Постникова, А.Ф.Чирку-нова, К.А.Пшеченкова, А.П.Дорохова и других ученых установлено, что качество работы картофелепосадочных, а в дальнейшем и картофелеуборочных машин определяется качеством выполнения операций на этапах подготовки почвы и ухода за посадками картофеля, от которых зависит чистота сепарации вороха при уборке картофеля. Засоренность картофельного вороха почвенными комками снижает качество разделения их на сортировальных пунктах. Вынос плодородного слоя почвы в картофельном ворохе при уборке определяет вред наносимый продуктивности почвы.

Традиционные технологии возделывания картофеля сопровождаются многократным проходом агрегатов по полю, что вызывает повышение механического воздействия ходовых систем на почву. Суммарная площадь следов движителей при возделывании картофеля превышает площадь обрабатываемого участка в 2 раза, 10-12% площади поля подвергается воздействию от 6 до 20 раз, 65-80% от одного до шести раз, не подвергается воздействию 10-15% площади.

Предупреждение появления почвенных комков – это одна из задач при подготовке почвы под картофель. Оценивая различные технологии производства картофеля, можно выбрать для конкретных условий (природно-климатических и организационно-экономических) наиболее эффективные технологические схемы возделывания картофеля. Очевидно, что исходя из энергетических критериев, предпочтение должно отдаваться той технологии, которая позволяет повысить качество выполнения агротехнических приемов по обработке почв, получать продукцию с более высоким коэффициентом энергетической эффективности, меньшими удельными энергозатратами.

Совершенствование технологии возделывания картофеля должно быть направлено на получение высоких урожаев, при снижении энерго- и трудозатрат за счёт не отдельных эффективных технологических приёмов, новых рабочих органов, а совокупности мероприятий, базирующихся на комплексном использовании передовой агротехники, системы машин в зависимости от погодно-климатических условий и развития растений.

Вторая глава «Разработка структурной модели оценки и совершенствования технологии возделывания и уборки картофеля» посвящена совершенствованию технологии возделывания и уборки картофеля. Проведен структурный анализ технологии возделывания и уборки картофеля, в результате которого выделены пять этапов: основная обработка почвы, предпосадочная обработка почвы, посадка картофеля и внесение удобрений, уход за посадками и уборка. Определены основные показатели, влияющие на качество выполнения каждого этапа. Разработана модель возделывания и уборки картофеля, рассмотрены составляющие системы и их функциональные связи, позволившие обосновать показатели, характеризующие эффективность процесса обработки почвы и внесения удобрений, а также ограничения, накладываемые на целевые функции. Определены основные направления совершенствования технологии возделывания и уборки картофеля.

В исследованиях, предшествующих нашему, рассматривалась существующая система «почва растение» в ее функциональных связях с техническими средствами (ТС) в применяемых технологиях. Задачей системы является получение максимальной или планируемой урожайности Y(t). Основные недостатки рассматриваемой системы состоят в следующем:

- применяемые технические средства для обработки почвы и внесения удобрений не учитывают обратные связи и неоднородность почвенной среды;

- основные факторы, определяющие процесс внесения удобрений, являются неопределенными;

- для составляющих системы «почва растение» не учитываются их физико-механические свойства и технологические показатели.

Для разработки структурной модели системы подготовки почвы и внесения удобрений требуется учет следующих положений:

- при любом способе обработки почвы и внесения удобрений объектами являются почва, удобрения, клубни и растения картофеля;

- объекты представляют собой единую систему и взаимодействуют друг с другом с учетом физико-механических свойств и технологических показателей;

- взаимодействие рабочих органов с почвенной средой, растениями (семенами) и удобрениями;

- для оценки качества функционирования технических средств необходимы контроль и управление технологическим процессом обработки почвы и внесения удобрений;

- необходимо управление потоками мощности энергетического средства через исполнительные механизмы, с целью снижения энергозатрат агрегата и выбора рациональных параметров и режимов работы рабочих органов машин для обеспечения заданного уровня качества обработки почвы и внесения удобрений.

С учетом изложенных положений в предлагаемую структурную модель включены агробиологическая (АБС), механико-технологи-ческая (МТС), техническая (ТС), агротехнологическая (АТС) и энергетическая (ЭС) системы (рисунок 1). Составляющие системы и их функциональные связи позволяют обосновать показатели, характеризующие эффективность процесса обработки почвы и внесения удобрений, обеспечивающие заданный уровень качества подготовки почвы с целью получения необходимого структурного состояния почвы.

В третьей главе «Обоснование параметров и режимов работы рабочих органов для предпосадочной обработки почвы» обоснованы рациональные параметры рабочих органов для предпосадочной обработки почвы. Смоделирован процесс обработки почвы, позволяющий определить характер изменения и распределения напряжений в почве при взаимодействии с рабочим органом. В соответствии с теоретическими предпосылками проведены экспериментальные исследования. Получены аналитические зависимости, определяющие взаимосвязь между качественными показателями работы почвообрабатывающих рабочих органов и их конструктивными параметрами. Представлены зависимости результатов тягово-энергетических показателей почвообрабатывающих орудий.





3.1. Грядообразователь фрезерного типа

Уравнения движения рабочего органа фрезерного барабана

x = Vпt - Rsinωt; (1)



определяют абсолютную траекторию движения рабочих органов фрезерного барабана с горизонтальной осью вращения (рисунок 2) без проскальзывания в параметрической форме.




Рисунок 2 – Расчетная схема к выбору уравнения движения

рабочего органа фрезы


Подача на рабочий орган – это показатель, определяющий энергетические и агротехнические показатели работы ротационных машин. Траектория движения ножа смещена относительно смежного ножа по горизонтали на некоторую величину подачи S =.Vt, где t - время, в течение которого нож поворачивается на угол, равный углу между соседними ножами.

Усилия резания ножами зависят от толщины стружки и определяются расстоянием между соседними траекториями ножей, измеренным в радиальном направлении от центра барабана, а также углом поворота и временем поворота между рабочими органами.

Значение срезаемой толщины стружки рабочим органом фрезы определяется зависимостью

. (2)

Теоретическими исследованиями установлено, что в рабочем диапазоне фреза работает с подачами S = 8-17 см, толщина стружки δ составляет 5-20 см. При работе с кинематическим параметром λ = 2-4 диаметр барабана фрезы составляет 0,4-0,5 м (рисунок 3). Количество ножей Z при указанных параметрах составляет 3-5 шт. в одной плоскости фрезерного барабана. Определенной величине кинемати-ческого параметра соответствует определенное значение подачи: малым значениям кинематического параметра соответствуют большие значения подачи и наоборот. Подача должна определяться из условий требуемого качества обработки почвы.




∆ – диапазон по глубине обработки почвы


Рисунок 3 – Зависимость подачи рабочего органа S

от кинематического параметра и диаметра барабана


Моделирование процесса обработки почвы позволяет обосновать рациональные параметры и режимы работы проектируемых почвообрабатывающих машин, определить величину тягового сопротивления орудия в целом.

При обосновании параметров рабочего органа фрезы для рассматриваемого случая контактного взаимодействия стержня и полуплоскости (рисунок 4) принята гипотеза Сен-Венана о затухании напряженно-деформированного состояния (НДС) на удалении от зоны контакта и тем самым постулируется возможность рассмотрения локального напряженно-деформированного состояния в зоне контакта.




Рисунок 4 – Схема деформированной полуплоскости

и контактирующего с ней стержня


Численное решение задачи о взаимодействии стержня и полуплоскости в системе MSC Patran показало, что деформации (рисунок 4 а) не противоречат физическому смыслу задачи. В системе Patran напряжения по умолчанию выводятся только в четырех точках, фиксированных для каждого типа поперечного сечения. Если выбрать какую либо точку (рисунок 4 в), то появится информация о напряжениях в наиболее нагруженном волокне стержня (рисунок 4 б). Нормальные напряжения в опасной точке стержня не превышают допускаемых (для малоуглеродистой стали 160 МПа).

Максимальные нелинейные напряжения полуплоскости не превышают 0,346 МПа, полные напряжения не превышают 0,556 МПа. Картины полос (рисунок 5) позволили получить информацию о напряженно-деформированном состоянии почвы. За рабочим органом дневная поверхность почвы покрывается трещинами, ориентированными вдоль оси вращения рабочего органа, а у свободного торца рабочего органа образуется уплотненное ядро. Соответственно расчеты нужно проводить, принимая во внимание характеристики этого уплотненного ядра почвы.




Рисунок 5 – Схема эквивалентных напряжений Мизеса

при повороте рабочего органа фрезы на угол 60о

Применение моделирования МКЭ позволяет описать процесс взаимодействия рабочего органа с почвой, определить направление главных напряжений в обрабатываемом слое почвы, выбрать параметры рабочих органов и режимов работы. Решение задачи о напряженно-деформированном состоянии почвы позволяет определить значение равнодействующей предельного сопротивления рабочего органа и величину тягового сопротивления орудия в целом:

, Н (3)

где τпр - предельное (разрушающее) значение касательного напряжения; φ – угол наклона рабочего органа, град; L - длина рабочего органа фрезы, м; - площадь подвергаемая обработке, м2; l - расстояние от центра фрезерного барабана до места приложения равнодействующей предельного сопротивления, м; G - сила тяжести вырезаемого блока, кг; С - расстояние до центра масс отрезаемой стружки, м; Z - число рабочих органов в одной плоскости, шт.

Уровень энергетической эффективности рабочей машины определяется КПД, величина которого показывает, какая часть от общей энергии, подведенной к машине (Nкр, ), используется непосредственно на преобразование предмета труда (почвы, растения) из одного качественного состояния в другое – конечное или промежуточное. Если обозначить отношение массы орудия, приходящейся на опорную поверхность СХМ к массе орудия в целом Gопор/Gор через ρ, то при средних условиях работы МТА коэффициент протаскивания машины определяется из выражения

. (4 )

Полезные затраты энергии на изменение качественного состояния почвы с учетом передачи энергии от ДВС к рабочей машине имеют вид

. (5)

Эти затраты снижаются с увеличением ρ (рисунок 6), а с увеличением поступательной скорости Vп полезные затраты имеют нарастающий характер.





Рисунок 6 – Полезные затраты энергии Nт.схм на изменение

качественного состояния почвы в зависимости от изменения ρ


КПД фрезерной почвообрабатывающей машины напрямую зависит от КПД механизма привода барабана и от потерь на перекатывание опорных частей машины; он равен отношению мощности на преодоление полезных сопротивлений ко всей потребляемой мощности:

. (6)

Для определения структурного состояния почвы в зависимости от кинематических параметров и режимов работы рабочего органа фрезерного почвообрабатывающего орудия, при фиксированных граничных значениях влажности удобрений, получена модель объекта исследований второго порядка, которая имеет вид

. (7)

Установлено, что значения однородности фракционного состава почвы при обработке рабочими органами фрезы (рисунок 3.35), соответствуют агротехническим требованиям при количестве ножей для фрезы в одной плоскости Z=3-4 шт. Эксперименты показали, что наилучшие показатели фракционного состава почвы при значениях кинематического параметра λ=4 и глубины обработки а=0,14 м обеспечиваются при значении диаметра барабана D=0,4 м. Экспериментальные значения по диаметру барабана и количеству ножей совпадают с теоретическими значениями. Условие экстремума соответствует максимуму при влажности почвы 20-22%.




Vп = 1,6 м/с, а=0,14 м, влажность почвы 20-22%

Рисунок 7 – Зависимость фракционного состава Ф

от изменения диаметра фрезы D и количества ножей Z

При энергетической оценке почвообрабатывающих машин с серийными и экспериментальными рабочими органами использован электротензометрический метод измерения и регистрации контролируемых параметров динамометрированием по ОСТ 102.2.-2002. Результатами экспериментов (рисунок 8) установлено, что с увеличением скорости движения агрегата и глубины обработки тяговое сопротивление грядообразователя фрезерного типа возрастает.





Рисунок 8 – Зависимости сопротивления R и удельного расхода

топлива q тягово-приводного агрегата от поступательной

скорости Vп и глубины обработки а


В области рациональных рабочих скоростей 5,0 км/ч величина тягового сопротивления R=3,5–6,0 кН. Показатели буксования составляют 8,0-8,7%, что не превышает нормативы для колесных тракторов. Обработка результатов испытаний показала, что энергетическая оценка грядообразователя с трактором МТЗ-82 на III и IV передачах при нарезке гряд фрезерованием соответствует скоростному режиму по агротехническим требованиям. Рабочие скорости изменяются в пределах 2,0–8,0 км/ч, с обеспечением качественных показателей и необходимой производительности до 0,6-0,8 га/ч.

При рабочих скоростях движения агрегата до 8 км/ч зависимости, полученные при экспериментальных исследованиях производительности агрегата, показывают сходимость с результатами теоретических исследований (рисунок 9) и носят прямолинейный характер. Далее экспериментальная кривая описывается уравнением второго порядка.




влажность почвы 22%, а = 10 см

Рисунок 9 – Зависимость производительности W

тягово-приводного агрегата от поступательной скорости Vп


Коэффициент использования эффективной мощности ДВС составляет 0,68-0,98, характеризуется двухпоточным разделением мощности на привод от ВОМ рабочих органов и на преодоление тягового сопротивления орудия и движителей трактора, что обеспечивает полную загрузку ДВС.