Выделяют пять общих требований к тестам контроля знаний: валидность; определенность (общепонятность)
Вид материала | Документы |
СодержаниеИспользование достаточных статистик |
- Фролова Е. В., Санжаровская, 148.22kb.
- Общих требований к ответу «5», 129.55kb.
- Система контроля знаний в преподавании русского языка и литературы, 101.79kb.
- Различные формы и методы контроля знаний учащихся Различные формы и методы контроля, 114.33kb.
- Общие рекомендации к составлению тестов компоновка тестов > Требования к тестам, 451.26kb.
- Методика преподавания иностранных языков располагает значительным теоретическим багажом, 63.9kb.
- Государственный университет Высшая школа экономики, 45.29kb.
- Положение о балльно-рейтинговой системе контроля знаний студентов Общие положения, 84.83kb.
- Конспекты лекций Тесты для контроля качества знаний Слайд-презентации, 36.6kb.
- Для многоуровневого контроля знаний студентов, 37.36kb.
Использование достаточных статистик
В рамках модели Раша первичные баллы участников тестирования (i=1, 2, 3, ……N) и заданий являются достаточными статистиками. Поэтому, если варианты теста являются параллельными, то участники, набравшие одинаковые первичные баллы получат одинаковые оценки подготовленности в логитах. Это позволяет получить на единой метрической шкале в логитах (К-1) узловых точек [6]:
, b=1, 2, 3, …., К-1,
где - уровень подготовленности участников, выполнявших вариант теста и набравших b баллов, - количество таких участников (- общее число участников по всем вариантам, набравшим по b баллов). Обозначим через уровень трудности j- узлового задания, полученный при обработке матрицы ответов - го варианта. Тогда для сведения всех уровней подготовленности, полученных по всем параллельным вариантам теста к единой метрической шкале можно использовать следующий алгоритм:
с помощью критерия согласия необходимо проверить статистические гипотезы о возможности применения модели Раша для описания полученных экспериментальных результатов;
необходимо задать условное начало (ноль) метрической шкалы для всех вариантов. Для чего из всех оценок латентных параметров и вычитается значение . Если бы модель Раша была бы полностью адекватна результатам тестирования, и отсутствовали бы ошибки измерений, то указанные смещения привели бы к полному совпадению значений , соответствующих одному и тому же значению первичного балла для любых вариантов теста, что является на практике маловероятным;
необходимо усреднить оценки подготовленности , соответствующие одинаковому первичному баллу b по различным вариантам теста и подсчитать дисперсии значений (). Для одного (любого) варианта и дисперсию усредненного значения ():
, b=1, 2, 3, …… К-1,
Однако необходимо убедиться, что максимальное уклонение от не противоречит гипотезе о равенстве математических ожиданий для любых параллельных вариантов теста.
Числа делят метрическую шкалу в логитах на К промежутков, каждому из которых можно приписать номер от 1 до К. Чтобы перенести на единую метрическую шкалу трудность j – задания (j=1, 2, 3, ….. К) в - варианте (), попадающую на промежуток с определенным номером, необходимо сделать линейную интерполяцию:
,
и - уклонения реально полученных оценок уровня подготовленности в варианте от усредненных значений, - исправленная трудность.
Недостатком данного подхода является то, что при линейной интерполяции копируется погрешность узловых значений уровней трудности заданий. Необходимо сглаживать эту погрешность, например можно аппроксимировать каждую функцию , заданную дискретно в (К-1) точках , кубическим сплайном (с учетом точности характеристик исходных значений ) [29]. Тогда исправленное значение латентного параметра уровня трудности задания можно представить следующим образом:
.
Далее используя исправленные значения уровней подготовленности участников тестирования (), приведенные к единой метрической шкале можно определить их окончательный балл.